The classification of two-component Cuntz-Krieger algebras

被引:14
作者
Huang, D
机构
关键词
Cuntz-Krieger algebra; stable isomorphism; topological Markov chain; flow equivalence;
D O I
10.1090/S0002-9939-96-03079-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cuntz-Krieger algebras with exactly one nontrivial closed ideal are classified up to stable isomorphism by the Cuntz invariant. The proof relies on Rordam's classification of simple Cuntz-Krieger algebras up to stable isomorphism and the author's classification of two-component reducible topological 0 Markov chains up to flow equivalence.
引用
收藏
页码:505 / 512
页数:8
相关论文
共 11 条
[1]   HOMOLOGY FOR ZERO-DIMENSIONAL NON-WANDERING SETS [J].
BOWEN, R ;
FRANKS, J .
ANNALS OF MATHEMATICS, 1977, 106 (01) :73-92
[2]  
Boyle Mike., 1993, Combinatorial and graph-theoretical problems in linear algebra (Minneapolis, MN, 1991), V50, P1
[4]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[5]  
CUNTZ J., COMMUNICATION
[6]  
CUNTZ J, 1986, GEOMETRIC METHODS OP, P145
[7]  
CUNTZ J, 1984, P OAGR C NEPTUN ROMA, P124
[8]  
Franks J., 1984, ERGOD THEOR DYN SYST, V4, P53
[9]   FLOW EQUIVALENCE OF REDUCIBLE SHIFTS OF FINITE-TYPE [J].
HUANG, DR .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 :695-720
[10]  
PARRY W, 1975, TOPOLOGY, V14, P297