Topological sensitivity analysis for systems biology

被引:65
作者
Babtie, Ann C. [1 ]
Kirk, Paul [1 ]
Stumpf, Michael P. H. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
基金
英国生物技术与生命科学研究理事会;
关键词
robustness analysis; biological networks; network inference; dynamical systems; PARAMETER UNCERTAINTY; REGULATORY NETWORKS; MODEL SELECTION; DYNAMIC-MODELS; INFERENCE; ODES;
D O I
10.1073/pnas.1414026112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.
引用
收藏
页码:18507 / 18512
页数:6
相关论文
共 46 条
[1]   Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics [J].
Aijo, Tarmo ;
Lahdesmaki, Harri .
BIOINFORMATICS, 2009, 25 (22) :2937-2944
[2]  
[Anonymous], 2002, Model selection and multimodel inference: a practical informationtheoretic approach
[3]  
[Anonymous], 2011, Stochastic modelling for systems biology
[4]  
[Anonymous], 2008, GLOBAL SENSITIVITY A
[5]  
[Anonymous], 2012, MACHINE LEARNING PRO
[6]  
[Anonymous], 2008, ADV NEURAL INFORM PR
[7]   Sloppy models, parameter uncertainty, and the role of experimental design [J].
Apgar, Joshua F. ;
Witmer, David K. ;
White, Forest M. ;
Tidor, Bruce .
MOLECULAR BIOSYSTEMS, 2010, 6 (10) :1890-1900
[8]   The Inferelator:: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo [J].
Bonneau, Richard ;
Reiss, David J. ;
Shannon, Paul ;
Facciotti, Marc ;
Hood, Leroy ;
Baliga, Nitin S. ;
Thorsson, Vesteinn .
GENOME BIOLOGY, 2006, 7 (05)
[9]  
Box GEP, 1987, Empirical model-building and response surfaces
[10]   Parameter estimation of ODE's via nonparametric estimators [J].
Brunel, Nicolas J-B. .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :1242-1267