Resonant triads for two bidirectional equations in 1+1 dimensions

被引:8
作者
Verhoeven, C
机构
[1] Free Univ Brussels, Theoret Natuurkunde, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Int Solvay Inst Phys & Chem, B-1050 Brussels, Belgium
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 44期
关键词
D O I
10.1088/0305-4470/37/44/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-soliton solution of the KdV equation is known not to degenerate into a solution describing resonant triads of, solitons in 1 + 1 dimensions. However, we show that two integrable coupled-KdV systems of the Drinfeld-Sokolov class possess solutions which may degenerate into resonant triads. These solutions are associated with a resonance relation which generalizes the usual one previously considered by Hirota and Ito.
引用
收藏
页码:10625 / 10638
页数:14
相关论文
共 19 条
[1]   INTEGRABLE QUARTIC POTENTIALS AND COUPLED KDV EQUATIONS [J].
BAKER, S ;
ENOLSKII, VZ ;
FORDY, AP .
PHYSICS LETTERS A, 1995, 201 (2-3) :167-174
[2]   INTEGRABLE MODEL WITH NON-TRIVIAL INTERACTION BETWEEN SUBLUMINAL AND SUPERLUMINAL SOLITONS [J].
BARASHENKOV, IV ;
GETMANOV, BS ;
KOVTUN, VE .
PHYSICS LETTERS A, 1988, 128 (3-4) :182-186
[3]   THE UNIFIED APPROACH TO INTEGRABLE RELATIVISTIC-EQUATIONS - SOLITON-SOLUTIONS OVER NONVANISHING BACKGROUNDS .2. [J].
BARASHENKOV, IV ;
GETMANOV, BS .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :3054-3072
[4]   On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy [J].
Biondini, G ;
Kodama, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (42) :10519-10536
[5]   The Boussinesq equation revisited [J].
Bogdanov, L ;
Zakharov, VE .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 165 (3-4) :137-162
[6]   BREAKING SOLITONS IN 2 + 1-DIMENSIONAL INTEGRABLE EQUATIONS [J].
BOGOYAVLENSKII, OI .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) :1-86
[7]  
DRINFELD VG, 1981, DOKL AKAD NAUK SSSR+, V258, P11
[8]   On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves [J].
Dye, JM ;
Parker, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) :2567-2589
[9]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[10]   RESONANCE OF SOLITONS IN ONE DIMENSION [J].
HIROTA, R ;
ITO, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (03) :744-748