Higher-order topology in bismuth

被引:701
作者
Schindler, Frank [1 ]
Wang, Zhijun [2 ]
Vergniory, Maia G. [3 ,4 ,5 ]
Cook, Ashley M. [1 ]
Murani, Anil [6 ]
Sengupta, Shamashis [7 ]
Kasumov, Alik Yu. [6 ,8 ]
Deblock, Richard [6 ]
Jeon, Sangjun [9 ,10 ]
Drozdov, Ilya [11 ]
Bouchiat, Helene [6 ]
Gueron, Sophie [6 ]
Yazdani, Ali [9 ,10 ]
Bernevig, B. Andrei [9 ,10 ]
Neupert, Titus [1 ]
机构
[1] Univ Zurich, Dept Phys, Zurich, Switzerland
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Donostia Int Phys Ctr, Donostia San Sebastian, Spain
[4] Univ Basque Country, UPV EHU, Fac Sci & Technol, Dept Appl Phys 2, Bilbao, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[6] Univ Paris Sud, CNRS, LPS, UMR 8502, Paris, France
[7] Univ Paris Sud, CSNSM, IN2P3, UMR 8609, Paris, France
[8] RAS, Inst Microelect Technol & High Pur Mat, Chernogolovka, Russia
[9] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[10] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[11] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY USA
基金
瑞士国家科学基金会; 美国国家科学基金会; 欧盟地平线“2020”;
关键词
GENERALIZED GRADIENT APPROXIMATION; QUANTIZED HALL CONDUCTANCE; CRYSTALLINE INSULATOR; EXPERIMENTAL REALIZATION; PHASE-TRANSITION; EDGE STATES;
D O I
10.1038/s41567-018-0224-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The mathematical field of topology has become a framework in which to describe the low-energy electronic structure of crystalline solids. Typical of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principles calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunnelling spectroscopy, we probe the signatures of the rotational symmetry of the one-dimensional states located at the step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator.
引用
收藏
页码:918 / +
页数:8
相关论文
共 69 条
[21]   Second-order topological insulators and superconductors with an order-two crystalline symmetry [J].
Geier, Max ;
Trifunovic, Luka ;
Hoskam, Max ;
Brouwer, Piet W. .
PHYSICAL REVIEW B, 2018, 97 (20)
[22]  
Hart S, 2014, NAT PHYS, V10, P638, DOI [10.1038/nphys3036, 10.1038/NPHYS3036]
[23]   Anisotropy and magnetization reversal with chains of submicron-sized Co hollow spheres [J].
He, Lin ;
Chen, Chinping ;
Liang, Fang ;
Wang, Ning ;
Guo, Lin .
PHYSICAL REVIEW B, 2007, 75 (21)
[24]   Fully unconstrained noncollinear magnetism within the projector augmented-wave method [J].
Hobbs, D ;
Kresse, G ;
Hafner, J .
PHYSICAL REVIEW B, 2000, 62 (17) :11556-11570
[25]   Observation of Unconventional Quantum Spin Textures in Topological Insulators [J].
Hsieh, D. ;
Xia, Y. ;
Wray, L. ;
Qian, D. ;
Pal, A. ;
Dil, J. H. ;
Osterwalder, J. ;
Meier, F. ;
Bihlmayer, G. ;
Kane, C. L. ;
Hor, Y. S. ;
Cava, R. J. ;
Hasan, M. Z. .
SCIENCE, 2009, 323 (5916) :919-922
[26]   Topological crystalline insulators in the SnTe material class [J].
Hsieh, Timothy H. ;
Lin, Hsin ;
Liu, Junwei ;
Duan, Wenhui ;
Bansil, Arun ;
Fu, Liang .
NATURE COMMUNICATIONS, 2012, 3
[27]  
Imhof S., 2017, TOPOLECTRICAL CIRCUI
[28]   Quantum spin Hall effect in graphene [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[29]   Z2 topological order and the quantum spin Hall effect -: art. no. 146802 [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[30]   Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes [J].
Karzig, Torsten ;
Knapp, Christina ;
Lutchyn, Roman M. ;
Bonderson, Parsa ;
Hastings, Matthew B. ;
Nayak, Chetan ;
Alicea, Jason ;
Flensberg, Karsten ;
Plugge, Stephan ;
Oreg, Yuval ;
Marcus, Charles M. ;
Freedman, Michael H. .
PHYSICAL REVIEW B, 2017, 95 (23)