Two Projection Methods for Solving the Split Common Fixed Point Problem with Multiple Output Sets in Hilbert Spaces

被引:24
作者
Kim, Jong Kyu [1 ]
Truong Minh Tuyen [2 ]
Mai Thi Ngoc Ha [3 ]
机构
[1] Kyungnam Univ, Dept Math Educ, Chang Won, Gyeongnam, South Korea
[2] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen, Vietnam
[3] Thai Nguyen Univ Agr & Forestry, Thai Nguyen, Vietnam
基金
新加坡国家研究基金会;
关键词
Multiple output sets; nonexpansive mapping; projection methods; split common fixed point problem; STRONG-CONVERGENCE THEOREM; FEASIBILITY PROBLEM; ALGORITHMS;
D O I
10.1080/01630563.2021.1933528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the split common fixed point problem with multiple output sets in Hilbert spaces. In order to solve this problem, we propose two new algorithms and establish two strong convergence theorems for both of them. Moreover, using these methods, we also remove the assumptions imposed on the norm of the transfer operators.
引用
收藏
页码:973 / 988
页数:16
相关论文
共 37 条
[1]  
Agarwal RP, 2009, TOPOL FIXED POINT TH, V6, P1, DOI 10.1007/978-0-387-75818-3_1
[2]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[4]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[5]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[6]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[7]  
Censor Y., 1994, NUMER ALGORITHMS, V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]
[8]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323
[9]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[10]   SHRINKING PROJECTION ALGORITHMS FOR THE SPLIT COMMON NULL POINT PROBLEM [J].
Dadashi, Vahid .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) :299-306