Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction

被引:12
作者
Gamcova, J. [1 ,6 ]
Mohanty, G. [2 ]
Michalik, S. [3 ,7 ]
Wehrs, J. [2 ]
Bednarcik, J. [1 ]
Krywka, C. [4 ]
Breguet, J. M. [2 ,5 ]
Michler, J. [2 ]
Franz, H. [1 ]
机构
[1] DESY, Notkestr 85, D-22547 Hamburg, Germany
[2] Empa, Lab Mech Mat & Nanostruct, Swiss Fed Labs Mat Sci & Technol, Feuerwerkerstr 39, CH-3602 Thun, Switzerland
[3] ASCR, Inst Phys, Na Slovance 2, Prague 18221, Czech Republic
[4] HZG, Inst Werkstoffforsch, Notkestr 85, D-22547 Hamburg, Germany
[5] Alemnis GmbH, Feuerwerkerstr 39, CH-3602 Thun, Switzerland
[6] Safarik Univ, Dept Condensed Matter Phys, Pk Angelinum 9, Kosice, Slovakia
[7] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
关键词
DEFORMATION; INDENTATION; BEHAVIOR; FLOW;
D O I
10.1063/1.4939981
中图分类号
O59 [应用物理学];
学科分类号
摘要
A pioneer in-situ synchrotron X-ray nanodiffraction approach for characterization and visualization of strain fields induced by nanoindentation in amorphous materials is introduced. In-situ nanoindentation experiments were performed in transmission mode using a monochromatic and highly focused sub-micron X-ray beam on 40 mu m thick Zr-based bulk metallic glass under two loading conditions. Spatially resolved X-ray diffraction scans in the deformed volume of Zr-based bulk metallic glass covering an area of 40 x 40 mu m(2) beneath the pyramidal indenter revealed two-dimensional map of elastic strains. The largest value of compressive elastic strain calculated from diffraction data at 1 N load was -0.65%. The region of high elastic compressive strains (<-0.3%) is located beneath the indenter tip and has radius of 7 mu m. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 21 条
  • [1] Indentation-induced localized deformation and elastic strain partitioning in composites at submicron length scale
    Barabash, R. I.
    Bei, H.
    Gao, Y. F.
    Ice, G. E.
    [J]. ACTA MATERIALIA, 2010, 58 (20) : 6784 - 6789
  • [2] Mapping the Strain Distributions in Deformed Bulk Metallic Glasses Using Hard X-Ray Diffraction
    Bednarcik, J.
    Chen, L. Y.
    Wang, X. D.
    Jiang, J. Z.
    Franz, H.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (05): : 1558 - 1563
  • [3] In situ TEM nanoindentation of nanoparticles
    Carlton, C. E.
    Ferreira, P. J.
    [J]. MICRON, 2012, 43 (11) : 1134 - 1139
  • [4] Two-dimensional detector software: From real detector to idealised image or two-theta scan
    Hammersley, AP
    Svensson, SO
    Hanfland, M
    Fitch, AN
    Hausermann, D
    [J]. HIGH PRESSURE RESEARCH, 1996, 14 (4-6) : 235 - 248
  • [5] Deformation behavior of Zr-based metallic glasses
    Heilmaier, M
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 117 (03) : 374 - 380
  • [6] Structural aspects of elastic deformation of a metallic glass
    Hufnagel, TC
    Ott, RT
    Almer, J
    [J]. PHYSICAL REVIEW B, 2006, 73 (06)
  • [7] PREPARATION OF 16 MM DIAMETER ROD OF AMORPHOUS ZR65AL7.5NI10CU17.5 ALLOY
    INOUE, A
    ZHANG, T
    NISHIYAMA, N
    OHBA, K
    MASUMOTO, T
    [J]. MATERIALS TRANSACTIONS JIM, 1993, 34 (12): : 1234 - 1237
  • [8] X-ray nanodiffraction reveals strain and microstructure evolution in nanocrystalline thin films
    Keckes, J.
    Bartosik, M.
    Daniel, R.
    Mitterer, C.
    Maier, G.
    Ecker, W.
    Vila-Comamala, J.
    David, C.
    Schoeder, S.
    Burghammer, M.
    [J]. SCRIPTA MATERIALIA, 2012, 67 (09) : 748 - 751
  • [9] Nanodiffraction at MINAXS (P03) beamline of PETRA III
    Krywka, C.
    Keckes, J.
    Storm, S.
    Buffet, A.
    Roth, S. V.
    Doehrmann, R.
    Mueller, M.
    [J]. 11TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION (SRI 2012), 2013, 425
  • [10] Direct observation of twin deformation in YBa2Cu3O7-x thin films by in situ nanoindentation in TEM
    Lee, Joon Hwan
    Zhang, Xinghang
    Wang, Haiyan
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)