1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation:: role of transferrin-receptor-dependent iron and hydrogen peroxide

被引:116
作者
Kalivendi, SV
Kotamraju, S
Cunningham, S
Shang, TS
Hillard, CJ
Kalyanaraman, B
机构
[1] Med Coll Wisconsin, Biophys Res Inst, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Free Rad Res Ctr, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Dept Pharmacol & Toxicol, Milwaukee, WI 53226 USA
关键词
caspase; 3; glutathione peroxidase; metalloporphyrin; nitric oxide synthase; oxidative stress; Parkinson's disease;
D O I
10.1042/BJ20021525
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
1-Methyl-4-phenylpyridinium (MPP+) is a neurotoxin used in cellular models of Parkinson's Disease. Although intracellular iron plays a crucial role in MPP+-induced apoptosis, the molecular signalling mechanisms linking iron, reactive oxygen species (ROS) and apoptosis are still unknown. We investigated these aspects using cerebellar granule neurons (CGNs) and human SH-SY5Y neuroblastoma cells. MPP+ enhanced caspase 3 activity after 24 h with significant increases as early as 12 h after treatment of cells. Pre-treatment of CGNs and neuroblastoma cells with the metal] oporphyrin antioxidant enzyme mimic, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), completely prevented the MPP+-induced caspase 3 activity as did overexpression of glutathione peroxidase (GPxl) and pre-treatment with a lipophilic, cell-permeable iron chelator [N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid, HBED]. MPP+ treatment increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labelling)positive cells which was completely blocked by pre-treatment with FeTBAP. MPP+ treatment significantly decreased the aconitase and mitochondrial complex I activities; pre-treatment with FeTBAP, HBED and GPx1 overexpression reversed this effect. MPPI treatment increased the intracellular oxidative stress by 2-3-fold, as determined by oxidation of dichlorodihydrofluorescein and dihydroethidium (hydroethidine). These effects were reversed by pre-treatment of cells with FeTBAP and HBED and by GPx1 overexpression. MPP+-treatment enhanced the cell-surface transferrin receptor (TfR) expression, suggesting a role for TfR-induced iron uptake in MPP+ toxicity. Treatment of cells with anti-TfR antibody (IgA class) inhibited MPP+-induced caspase activation. Inhibition of nitric oxide synthase activity did not affect caspase 3 activity, apoptotic cell death or ROS generation by MPP+. Overall, these results suggest that MPP+-induced cell death in CGNs and neuroblastoma cells proceeds via apoptosis and involves mitochondrial release of ROS and TfR-dependent iron.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 51 条
[1]   MPP+ AND MPDP+ INDUCED OXYGEN RADICAL FORMATION WITH MITOCHONDRIAL-ENZYMES [J].
ADAMS, JD ;
KLAIDMAN, LK ;
LEUNG, AC .
FREE RADICAL BIOLOGY AND MEDICINE, 1993, 15 (02) :181-186
[2]   INVOLVEMENT OF FREE-RADICALS IN MPP(+) NEUROTOXICITY AGAINST RAT DOPAMINERGIC-NEURONS IN CULTURE [J].
AKANEYA, Y ;
TAKAHASHI, M ;
HATANAKA, H .
NEUROSCIENCE LETTERS, 1995, 193 (01) :53-56
[3]  
BATES TE, 1994, J NEUROCHEM, V63, P640
[4]   A PRIMATE MODEL OF PARKINSONISM - SELECTIVE DESTRUCTION OF DOPAMINERGIC-NEURONS IN THE PARS COMPACTA OF THE SUBSTANTIA NIGRA BY N-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE [J].
BURNS, RS ;
CHIUEH, CC ;
MARKEY, SP ;
EBERT, MH ;
JACOBOWITZ, DM ;
KOPIN, IJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (14) :4546-4550
[5]   Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease [J].
Cassarino, DS ;
Fall, CP ;
Swerdlow, RH ;
Smith, TS ;
Halvorsen, EM ;
Miller, SW ;
Parks, JP ;
Parker, WD ;
Bennett, JP .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1997, 1362 (01) :77-86
[6]   METABOLISM OF THE NEUROTOXIC TERTIARY AMINE, MPTP, BY BRAIN MONOAMINE-OXIDASE [J].
CHIBA, K ;
TREVOR, A ;
CASTAGNOLI, N .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1984, 120 (02) :574-578
[7]   IRREVERSIBLE INHIBITION OF MITOCHONDRIAL COMPLEX-I BY 1-METHYL-4-PHENYLPYRIDINIUM - EVIDENCE FOR FREE-RADICAL INVOLVEMENT [J].
CLEETER, MWJ ;
COOPER, JM ;
SCHAPIRA, AHV .
JOURNAL OF NEUROCHEMISTRY, 1992, 58 (02) :786-789
[8]  
Dawson VL, 1996, J NEUROSCI, V16, P2479
[9]  
Day BJ, 1995, J PHARMACOL EXP THER, V275, P1227
[10]   APOPTOSIS AND DNA-DEGRADATION INDUCED BY 1-METHYL-4-PHENYLPYRIDINIUM IN NEURONS [J].
DIPASQUALE, B ;
MARINI, AM ;
YOULE, RJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 181 (03) :1442-1448