Early Detection of Subclinical Visual Damage After Blast-Mediated TBI Enables Prevention of Chronic Visual Deficit by Treatment With P7C3-S243

被引:76
作者
Dutca, Laura M. [1 ,2 ,3 ]
Stasheff, Steven F. [2 ,3 ,4 ,5 ]
Hedberg-Buenz, Adam [1 ,6 ]
Rudd, Danielle S. [1 ]
Batra, Nikhil [1 ]
Blodi, Frederick R. [4 ]
Yorek, Matthew S. [1 ]
Yin, Terry [7 ]
Shankar, Malini [4 ]
Herlein, Judith A. [1 ]
Naidoo, Jacinth [8 ]
Morlock, Lorraine [8 ]
Williams, Noelle [8 ]
Kardon, Randy H. [1 ,2 ,3 ]
Anderson, Michael G. [1 ,2 ,3 ,6 ]
Pieper, Andrew A. [1 ,5 ,7 ]
Harper, Matthew M. [1 ,2 ,3 ]
机构
[1] Iowa City Dept Vet Affairs, Ctr Prevent & Treatment Visual Loss, Iowa City, IA USA
[2] Univ Iowa, Dept Ophthalmol, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Visual Sci, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Pediat, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Neurol, Iowa City, IA 52242 USA
[6] Univ Iowa, Dept Physiol & Mol Biophys, Iowa City, IA 52242 USA
[7] Univ Iowa, Dept Psychiat, Iowa City, IA 52242 USA
[8] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
关键词
multielectrode array; retinal ganglion cell; pattern ERG; blast injury; neuroprotection; NEUROPROTECTIVE EFFICACY; MOUSE MODEL; AMINOPROPYL CARBAZOLES; DYSFUNCTION; DEGENERATION; DISCOVERY; CELLS; FIELD; EYE;
D O I
10.1167/iovs.14-15468
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. METHODS. Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. RESULTS. We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. CONCLUSIONS. Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI.
引用
收藏
页码:8330 / 8341
页数:12
相关论文
共 34 条
[1]  
[Anonymous], 2014, MOL PSYCHIAT
[2]  
Blaya MO, 2014, J NEUROTRAUM, V31, P476, DOI [10.1089/NEU.2013.3135, 10.1089/neu.2013.3135]
[3]  
Chichilnisky EJ, 2001, NETWORK-COMP NEURAL, V12, P199, DOI 10.1088/0954-898X/12/2/306
[4]   Closed-Eye Ocular Injuries in the Iraq and Afghanistan Wars [J].
Cockerham, Glenn C. ;
Rice, Thomas A. ;
Hewes, Eva H. ;
Cockerham, Kimberly P. ;
Lemke, Sonne ;
Wang, Gloria ;
Lin, Richard C. ;
Glynn-Milley, Catherine ;
Zumhagen, Lars .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (22) :2172-2173
[5]   Eye and visual function in traumatic brain injury [J].
Cockerham, Glenn C. ;
Goodrich, Gregory L. ;
Weichel, L. T. C. Eric D. ;
Orcutt, James C. ;
Rizzo, Joseph F. ;
Bower, C. O. L. Kraig S. ;
Schuchard, Ronald A. .
JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 2009, 46 (06) :811-818
[6]   CHARACTERIZATION OF VASCULAR DEVELOPMENT IN THE MOUSE RETINA [J].
CONNOLLY, SE ;
HORES, TA ;
SMITH, LEH ;
DAMORE, PA .
MICROVASCULAR RESEARCH, 1988, 36 (03) :275-290
[7]   Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease [J].
De Jesus-Cortes, Hector ;
Xu, Pin ;
Drawbridge, Jordan ;
Estill, Sandi Jo ;
Huntington, Paula ;
Tran, Stephanie ;
Britt, Jeremiah ;
Tesla, Rachel ;
Morlock, Lorraine ;
Naidoo, Jacinth ;
Melito, Lisa M. ;
Wang, Gelin ;
Williams, Noelle S. ;
Ready, Joseph M. ;
McKnight, Steven L. ;
Pieper, Andrew A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (42) :17010-17015
[8]   Differential Progression of Structural and Functional Alterations in Distinct Retinal Ganglion Cell Types in a Mouse Model of Glaucoma [J].
Della Santina, Luca ;
Inman, Denise M. ;
Lupien, Caroline B. ;
Horner, Philip J. ;
Wong, Rachel O. L. .
JOURNAL OF NEUROSCIENCE, 2013, 33 (44) :17444-17457
[9]   Visual dysfunction following blast-related traumatic brain injury from the battlefield [J].
Dougherty, Amber L. ;
MacGregor, Andrew J. ;
Han, Peggy P. ;
Heltemes, Kevin J. ;
Galarneau, Michael R. .
BRAIN INJURY, 2011, 25 (01) :8-13
[10]   Sustained Ocular Hypertension Induces Dendritic Degeneration of Mouse Retinal Ganglion Cells That Depends on Cell Type and Location [J].
Feng, Liang ;
Zhao, Yan ;
Yoshida, Miho ;
Chen, Hui ;
Yang, Jessica F. ;
Kim, Ted S. ;
Cang, Jianhua ;
Troy, John B. ;
Liu, Xiaorong .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (02) :1106-1117