Principles of human movement augmentation and the challenges in making it a reality

被引:48
作者
Eden, Jonathan [1 ]
Braecklein, Mario [1 ]
Ibanez, Jaime [1 ,2 ,3 ]
Barsakcioglu, Deren Yusuf [1 ]
Di Pino, Giovanni [4 ]
Farina, Dario [1 ]
Burdet, Etienne [1 ]
Mehring, Carsten [5 ,6 ]
机构
[1] Imperial Coll Sci Technol & Med, Dept Bioengn, London, England
[2] Univ Zaragoza, IIS Aragon, BSICoS, Zaragoza, Spain
[3] UCL, Inst Neurol, Dept Clin & Movement Neurosci, London, England
[4] Univ Campus Biomed Roma, NEXT Neurophysiol & Neuroengn Human Technol Inter, Rome, Italy
[5] Univ Freiburg, Bernstein Ctr Freiburg, D-79104 Freiburg, Germany
[6] Univ Freiburg, Fac Biol, D-79104 Freiburg, Germany
基金
英国工程与自然科学研究理事会;
关键词
BRAIN-COMPUTER INTERFACE; DA-VINCI; ARM; EXOSKELETONS; MANIPULATION; PATTERNS; FEEDBACK; DESIGN; SYSTEM;
D O I
10.1038/s41467-022-28725-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this Review, the authors discuss recent technological and neuroscientific advances in human body augmentation. They construct a movement augmentation taxonomy, discuss how it is achieved, and propose a vision for the field. Augmenting the body with artificial limbs controlled concurrently to one's natural limbs has long appeared in science fiction, but recent technological and neuroscientific advances have begun to make this possible. By allowing individuals to achieve otherwise impossible actions, movement augmentation could revolutionize medical and industrial applications and profoundly change the way humans interact with the environment. Here, we construct a movement augmentation taxonomy through what is augmented and how it is achieved. With this framework, we analyze augmentation that extends the number of degrees-of-freedom, discuss critical features of effective augmentation such as physiological control signals, sensory feedback and learning as well as application scenarios, and propose a vision for the field.
引用
收藏
页数:13
相关论文
共 118 条
  • [91] Prattichizzo D, 2014, IEEE ROMAN, P993, DOI 10.1109/ROMAN.2014.6926382
  • [92] The function of efference copy signals: Implications for symptoms of schizophrenia
    Pynn, Laura K.
    DeSouza, Joseph F. X.
    [J]. VISION RESEARCH, 2013, 76 : 124 - 133
  • [93] Toward active tremor canceling in handheld microsurgical instruments
    Riviere, CN
    Ang, WT
    Khosla, PK
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2003, 19 (05): : 793 - 800
  • [94] Rossi S., 2021, SCI REP-UK, V11, P1
  • [95] Neural constraints on learning
    Sadtler, Patrick T.
    Quick, Kristin M.
    Golub, Matthew D.
    Chase, Steven M.
    Ryu, Stephen I.
    Tyler-Kabara, Elizabeth C.
    Yu, Byron M.
    Batista, Aaron P.
    [J]. NATURE, 2014, 512 (7515) : 423 - U428
  • [96] Wearable multichannel haptic device for encoding proprioception in the upper limb
    Sagastegui Alva, Patrick G.
    Muceli, Silvia
    Farokh Atashzar, S.
    William, Lucie
    Farina, Dario
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (05)
  • [97] Sasaki T., 2017, ACM SIGGRAPH EMERGIN, V12
  • [98] Sasaki T., 2016, VIRTUAL REALITY INT
  • [99] Seo W., 2016, INT S AUTOMATION ROB
  • [100] Grasp Posture Control of Wearable Extra Robotic Fingers with Flex Sensors Based on Neural Network
    Setiawan, Joga Dharma
    Ariyanto, Mochammad
    Munadi, M.
    Mutoha, Muhammad
    Glowacz, Adam
    Caesarendra, Wahyu
    [J]. ELECTRONICS, 2020, 9 (06)