Low Mach Number Limit for the Navier-Stokes System on Unbounded Domains Under Strong Stratification

被引:14
作者
Feireisl, Eduard [1 ]
Novotny, Antonin [2 ]
Petzeltova, Hana [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ Sud Toulon Var, Dept Math, La Garde, France
关键词
Dispersive estimates; Low Mach number limit; Stratified fluid; COMPRESSIBLE FLOWS; WEAK SOLUTIONS; EQUATION; EXTERIOR; WAVE;
D O I
10.1080/03605300903279377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the low Mach number singular limit problem for the Navier-Stokes system describing the motion of a compressible fluid under strong stratification in an exterior domain. It is shown that the limit problem is represented by the so-called anelastic approximation. In particular, strong (pointwise) convergence of the acoustic components of the velocity is established by means of an abstract result of Tosio Kato.
引用
收藏
页码:68 / 88
页数:21
相关论文
共 22 条
[1]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[2]  
Bogovskii M. E., 1980, Proc. Sobolev Sem., V1, P5
[3]   An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit [J].
Bresch, D ;
Gisclon, M ;
Lin, CK .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :477-486
[4]  
Burq N, 2004, INDIANA U MATH J, V53, P1665
[5]   Low Mach number limit of viscous compressible flows in the whole space [J].
Desjardins, B ;
Grenier, E .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986) :2271-2279
[6]   On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow [J].
Feireisl, E ;
Petzeltová, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :755-767
[7]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[8]   Anelastic approximation as a singular limit of the compressible Navier-Stokes system [J].
Feireisl, Eduard ;
Malek, Josef ;
Novotny, Antonin ;
Straskraba, Ivan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (01) :157-176
[9]  
Feireisl E, 2009, ADV MATH FLUID MECH, P1
[10]  
Geissert M, 2006, OPER THEORY ADV APPL, V168, P113