Factor stochastic volatility with time varying loadings and Markov switching regimes

被引:47
作者
Lopes, Hedibert Freitas
Carvalho, Carlos Marinho
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
关键词
Bayesian inference; factor analysis; variance decomposition; dynamic models; Markov switching;
D O I
10.1016/j.jspi.2006.06.047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We generalize the factor stochastic volatility (FSV) model of Pitt and Shephard [ 1999. Time varying covariances: a factor stochastic volatility approach (with discussion). In: Bemardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, vol. 6, Oxford University Press, London, pp. 547-570.] and Aguilar and West [2000. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. J. Business Econom. Statist. 18, 338-357.] in two important directions. First, we make the FSV model more flexible and able to capture more general time-varying variance-covariance structures by letting the matrix of factor loadings to be time dependent. Secondly, we entertain FSV models with jumps in the common factors volatilities through So, Lam and Li's [1998. A stochastic volatility model with Markov switching. J. Business Econom. Statist. 16, 244-253.] Markov switching stochastic volatility model. Novel Markov Chain Monte Carlo algorithms are derived for both classes of models. We apply our methodology to two illustrative situations: daily exchange rate returns [Aguilar, O., West, M., 2000. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. J. Business Econom. Statist. 18, 338-357.] and Latin American stock returns [Lopes, H.F., Migon, H.S., 2002. Comovements and contagion in emergent markets: stock indexes volatilities. In: Gatsonis, C., Kass, R.E., Carriquiry, A.L., Gelman, A., Verdinelli, I., Pauler, D., Higdon, D. (Eds.), Case Studies in Bayesian Statistics, vol. 6, pp. 287-302]. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3082 / 3091
页数:10
相关论文
共 27 条
[1]   Bayesian dynamic factor models and portfolio allocation [J].
Aguilar, O ;
West, M .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2000, 18 (03) :338-357
[2]  
AGUILAR O, 1998, THESIS DUKE U
[4]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[5]   Simulation-based sequential analysis of Markov switching stochastic volatility models [J].
Carvalho, Carlos M. ;
Lopes, Hedibert F. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) :4526-4542
[6]  
CARVALHO CM, 2005, HIGH DIMENSIONAL SPA
[7]   Analysis of high dimensional multivariate stochastic volatility models [J].
Chib, Siddhartha ;
Nardari, Federico ;
Shephard, Neil .
JOURNAL OF ECONOMETRICS, 2006, 134 (02) :341-371
[8]  
Doucet A., 2001, SEQUENTIAL MONTE CAR, V1, DOI [10.1007/978-1-4757-3437-9, DOI 10.1007/978-1-4757-3437-9]
[9]   Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models [J].
Engle, R .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (03) :339-350
[10]  
Fruhwirth-Schnatter S., 1994, Journal of Time Series Analysis, V15, P183, DOI DOI 10.1111/J.1467-9892.1994.TB00184.X