Modulus of continuity of the coefficients and (non)quasianalytic solutions in the strictly hyperbolic Cauchy problem

被引:6
作者
Cicognani, Massimo
Colombini, Ferruccio
机构
[1] Univ Bologna, Fac Ingn 2, Dept Math, I-47023 Cesena, Italy
[2] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
[3] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
Cauchy problem; regularity of coefficients; (non)quasianalytic solutions;
D O I
10.1016/j.jmaa.2006.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the strictly hyperbolic Cauchy problem, we investigate the relation between the modulus of continuity in the time variable of the coefficients and the well-posedness in Beurling-Roumieu classes of ultra-differentiable functions and functionals. We find well-posedness in nonquasi analytic classes assuming that the coefficients have modulus of continuity t omega(1/t) such that integral(1)(0) omega(1/t)dt < +infinity. This condition is sharp because, in thecase integral(1 omega)(0)(1/t)dt = +infinity, we provideexamples of Cauchy problems which are well-posed only in quasianalytic classes. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1237 / 1253
页数:17
相关论文
共 17 条
[1]  
[Anonymous], PSEUDODIFFERENTIAL O
[2]  
[Anonymous], RESULT MATH
[3]   ON FOURIER TRANSFORMS OF MEASURES WITH COMPACT SUPPORT [J].
BEURLING, A ;
MALLIAVIN, P .
ACTA MATHEMATICA, 1962, 107 (3-4) :291-309
[4]   HYPERBOLIC-EQUATIONS AND CLASSES OF INFINITELY DIFFERENTIABLE FUNCTIONS [J].
COLOMBINI, F ;
JANNELLI, E ;
SPAGNOLO, S .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 143 :187-195
[5]   HYPERBOLIC OPERATORS WITH NON-LIPSCHITZ COEFFICIENTS [J].
COLOMBINI, F ;
LERNER, N .
DUKE MATHEMATICAL JOURNAL, 1995, 77 (03) :657-698
[6]  
COLOMBINI F, 1989, ANN SCI ECOLE NORM S, V22, P109
[7]   Weakly hyperbolic equations of second order and ultradifferentiable functions [J].
Colombini, F ;
Nishitani, T .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (01) :25-28
[8]  
Colombini F., 1979, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V6, P511
[9]   Pseudo differential operators on non-quasianalytic classes of Beurling type [J].
Fernandez, C ;
Galbis, A ;
Jornet, D .
STUDIA MATHEMATICA, 2005, 167 (02) :99-131
[10]   CAUCHY-PROBLEM FOR NONSTRICTLY HYPERBOLIC SYSTEMS IN GEVREY-CLASSES [J].
KAJITANI, K .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1983, 23 (03) :599-616