A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping

被引:103
作者
Cheng, Jianhong [1 ,2 ]
Liu, Jin [1 ]
Kuang, Hulin [1 ]
Wang, Jianxin [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Peoples R China
[2] Inst Guizhou Aerosp Measuring & Testing Technol, Guiyang 550009, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Multitasking; Task analysis; Magnetic resonance imaging; Feature extraction; Tumors; Transformers; Multi-task learning; semi-supervised; glioma segmentation; IDH genotyping; transformer; BRAIN-TUMOR SEGMENTATION; T2-FLAIR MISMATCH; GRADE GLIOMAS; NETWORK; MODEL; CLASSIFICATION; RADIOMICS; 1P/19Q;
D O I
10.1109/TMI.2022.3142321
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The accurate prediction of isocitrate dehydrogenase (IDH) mutation and glioma segmentation are important tasks for computer-aided diagnosis using preoperative multimodal magnetic resonance imaging (MRI). The two tasks are ongoing challenges due to the significant inter-tumor and intra-tumor heterogeneity. The existing methods to address them are mostly based on single-task approaches without considering the correlation between the two tasks. In addition, the acquisition of IDH genetic labels is expensive and costly, resulting in a limited number of IDH mutation data for modeling. To comprehensively address these problems, we propose a fully automated multimodal MRI-based multi-task learning framework for simultaneous glioma segmentation and IDH genotyping. Specifically, the task correlation and heterogeneity are tackled with a hybrid CNN-Transformer encoder that consists of a convolutional neural network and a transformer to extract the shared spatial and global information learned from a decoder for glioma segmentation and a multi-scale classifier for IDH genotyping. Then, a multi-task learning loss is designed to balance the two tasks by combining the segmentation and classification loss functions with uncertain weights. Finally, an uncertainty-aware pseudo-label selection is proposed to generate IDH pseudo-labels from larger unlabeled data for improving the accuracy of IDH genotyping by using semi-supervised learning. We evaluate our method on a multi-institutional public dataset. Experimental results show that our proposed multi-task network achieves promising performance and outperforms the single-task learning counterparts and other existing state-of-the-art methods. With the introduction of unlabeled data, the semi-supervised multi-task learning framework further improves the performance of glioma segmentation and IDH genotyping. The source codes of our framework are publicly available at https://github.com/miacsu/MTTU-Net.git.
引用
收藏
页码:1520 / 1532
页数:13
相关论文
共 49 条
[1]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[2]   Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma [J].
Ceccarelli, Michele ;
Barthel, Floris P. ;
Malta, Tathiane M. ;
Sabedot, Thais S. ;
Salama, Sofie R. ;
Murray, Bradley A. ;
Morozova, Olena ;
Newton, Yulia ;
Radenbaugh, Amie ;
Pagnotta, Stefano M. ;
Anjum, Samreen ;
Wang, Jiguang ;
Manyam, Ganiraju ;
Zoppoli, Pietro ;
Ling, Shiyun ;
Rao, Arjun A. ;
Grifford, Mia ;
Cherniack, Andrew D. ;
Zhang, Hailei ;
Poisson, Laila ;
Carlotti, Carlos Gilberto, Jr. ;
Tirapelli, Daniela Pretti da Cunha ;
Rao, Arvind ;
Mikkelsen, Tom ;
Lau, Ching C. ;
Yung, W. K. Alfred ;
Rabadan, Raul ;
Huse, Jason ;
Brat, Daniel J. ;
Lehman, Norman L. ;
Barnholtz-Sloan, Jill S. ;
Zheng, Siyuan ;
Hess, Kenneth ;
Rao, Ganesh ;
Meyerson, Matthew ;
Beroukhim, Rameen ;
Cooper, Lee ;
Akbani, Rehan ;
Wrensch, Margaret ;
Haussler, David ;
Aldape, Kenneth D. ;
Laird, Peter W. ;
Gutmann, David H. ;
Noushmehr, Houtan ;
Iavarone, Antonio ;
Verhaak, Roel G. W. .
CELL, 2016, 164 (03) :550-563
[3]   Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging [J].
Chang, Ken ;
Bai, Harrison X. ;
Zhou, Hao ;
Su, Chang ;
Bi, Wenya Linda ;
Agbodza, Ena ;
Kavouridis, Vasileios K. ;
Senders, Joeky T. ;
Boaro, Alessandro ;
Beers, Andrew ;
Zhang, Biqi ;
Capellini, Alexandra ;
Liao, Weihua ;
Shen, Qin ;
Li, Xuejun ;
Xiao, Bo ;
Cryan, Jane ;
Ramkissoon, Shakti ;
Ramkissoon, Lori ;
Ligon, Keith ;
Wen, Patrick Y. ;
Bindra, Ranjit S. ;
Woo, John ;
Arnaout, Omar ;
Gerstner, Elizabeth R. ;
Zhang, Paul J. ;
Rosen, Bruce R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
CLINICAL CANCER RESEARCH, 2018, 24 (05) :1073-1081
[4]   3D Dilated Multi-fiber Network for Real-Time Brain Tumor Segmentation in MRI [J].
Chen, Chen ;
Liu, Xiaopeng ;
Ding, Meng ;
Zheng, Junfeng ;
Li, Jiangyun .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :184-192
[5]   Multimodal Disentangled Variational Autoencoder With Game Theoretic Interpretability for Glioma Grading [J].
Cheng, Jianhong ;
Gao, Min ;
Liu, Jin ;
Yue, Hailin ;
Kuang, Hulin ;
Liu, Jun ;
Wang, Jianxin .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (02) :673-684
[6]   Prediction of Glioma Grade Using Intratumoral and Peritumoral Radiomic Features From Multiparametric MRI Images [J].
Cheng, Jianhong ;
Liu, Jin ;
Yue, Hailin ;
Bai, Harrison ;
Pan, Yi ;
Wang, Jianxin .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) :1084-1095
[7]  
Cheng JH, 2019, IEEE INT C BIOINFORM, P1031, DOI [10.1109/BIBM47256.2019.8983092, 10.1109/bibm47256.2019.8983092]
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   Efficient multilevel brain tumor segmentation with integrated Bayesian model classification [J].
Corso, Jason J. ;
Sharon, Eitan ;
Dube, Shishir ;
El-Saden, Suzie ;
Sinha, Usha ;
Yuille, Alan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (05) :629-640
[10]  
Delfanti RL, 2017, J NEURO-ONCOL, V135, P601, DOI 10.1007/s11060-017-2613-7