Generalized Proca action for an Abelian vector field

被引:161
作者
Allys, Erwan [1 ,2 ,3 ]
Peter, Patrick [1 ,2 ,3 ]
Rodriguez, Yeinzon [4 ,5 ,6 ]
机构
[1] Inst Astrophys Paris, UMR 7095, 98 Bis Bd Arago, F-75014 Paris, France
[2] Univ Paris 06, Paris, France
[3] Sorbonne Univ, CNRS, Paris, France
[4] Univ Antonio Narino, Ctr Invest Ciencias Basicas & Aplicadas, Cra 3 Este 47A-15, Bogota 110231, Colombia
[5] Univ Ind Santander, Escuela Fis, Ciudad Univ, Bucaramanga 680002, Colombia
[6] Abdus Salam Int Ctr Theoret Phys, Simons Associate, Str Costiera 11, I-34151 Trieste, Italy
关键词
gravity; modified gravity; particle physics - cosmology connection; EQUATIONS;
D O I
10.1088/1475-7516/2016/02/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We revisit the most general theory for a massive vector field with derivative self interactions, extending previous works on the subject to account for terms having trivial total derivative interactions for the longitudinal mode. In the flat spacetime (Minkowski) case, we obtain all the possible terms containing products of up to five first-order derivatives of the vector field, and provide a conjecture about higher-order terms. Rendering the metric dynamical, we covariantize the results and add all possible terms implying curvature.
引用
收藏
页数:19
相关论文
共 27 条
[1]  
[Anonymous], 1850, Mem. Acad. St. Petersbourg
[2]   Cosmologies in Horndeski's second-order vector-tensor theory [J].
Barrow, John D. ;
Thorsrud, Mikjel ;
Yamamoto, Kei .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02)
[3]   Cosmology of the Galileon from massive gravity [J].
de Rham, Claudia ;
Heisenberg, Lavinia .
PHYSICAL REVIEW D, 2011, 84 (04)
[4]   From k-essence to generalized Galileons [J].
Deffayet, C. ;
Gao, Xian ;
Steer, D. A. ;
Zahariade, G. .
PHYSICAL REVIEW D, 2011, 84 (06)
[5]   Arbitrary p-form Galileons [J].
Deffayet, C. ;
Deser, S. ;
Esposito-Farese, G. .
PHYSICAL REVIEW D, 2010, 82 (06)
[6]   Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress tensors [J].
Deffayet, C. ;
Deser, S. ;
Esposito-Farese, G. .
PHYSICAL REVIEW D, 2009, 80 (06)
[7]   Covariant Galileon [J].
Deffayet, C. ;
Esposito-Farese, G. ;
Vikman, A. .
PHYSICAL REVIEW D, 2009, 79 (08)
[8]   A no-go theorem for generalized vector Galileons on flat spacetime [J].
Deffayet, Cedric ;
Guemruekcueoglu, A. Emir ;
Mukohyama, Shinji ;
Wang, Yi .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04)
[9]   A formal introduction to Horndeski and Galileon theories and their generalizations [J].
Deffayet, Cedric ;
Steer, Daniele A. .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (21)
[10]  
Fleury P., 2014, JCAP, V11, P043