MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

被引:38
作者
Jasion, G. T. [1 ]
Shrimpton, J. S. [2 ]
Chen, Y. [1 ]
Bradley, T. [1 ]
Richardson, D. J. [1 ]
Poletti, F. [1 ]
机构
[1] Univ Southampton, Optoelect Res Ctr, Fac Phys Sci & Engn, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会; 欧盟第七框架计划;
关键词
PHOTONIC CRYSTAL FIBERS; BANDGAP FIBERS; VISCOSITY; SILICA; FABRICATION; GENERATION; PREFORMS; LIGHT; SPEED; AIR;
D O I
10.1364/OE.23.000312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans. (C) 2015 Optical Society of America
引用
收藏
页码:312 / 329
页数:18
相关论文
共 42 条
[31]   Ultimate low loss of hollow-core photonic crystal fibres [J].
Roberts, PJ ;
Couny, F ;
Sabert, H ;
Mangan, BJ ;
Williams, DP ;
Farr, L ;
Mason, MW ;
Tomlinson, A ;
Birks, TA ;
Knight, JC ;
Russell, PSJ .
OPTICS EXPRESS, 2005, 13 (01) :236-244
[32]  
Russell PS, 2014, NAT PHOTONICS, V8, P278, DOI [10.1038/NPHOTON.2013.312, 10.1038/nphoton.2013.312]
[33]   High Capacity Mode-Division Multiplexed Optical Transmission in a Novel 37-cell Hollow-Core Photonic Bandgap Fiber [J].
Sleiffer, Vincent A. J. M. ;
Jung, Yongmin ;
Baddela, Naveen K. ;
Surof, Janis ;
Kuschnerov, Maxim ;
Veljanovski, Vladimir ;
Hayes, John R. ;
Wheeler, Natalie V. ;
Fokoua, Eric R. Numkam ;
Wooler, John P. ;
Gray, David R. ;
Wong, Nicholas Heng-Loong ;
Parmigiani, Francesca R. ;
Alam, Shaif-ul ;
Petrovich, Marco N. ;
Poletti, Francesco ;
Richardson, David J. ;
de Waardt, Huug .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (04) :854-863
[34]   Low-loss hollow-core silica/air photonic bandgap fibre [J].
Smith, CM ;
Venkataraman, N ;
Gallagher, MT ;
Müller, D ;
West, JA ;
Borrelli, NF ;
Allan, DC ;
Koch, KW .
NATURE, 2003, 424 (6949) :657-659
[35]   Drawing of micro-structured fibres: circular and non-circular tubes [J].
Stokes, Yvonne M. ;
Buchak, Peter ;
Crowdy, Darren G. ;
Ebendorff-Heidepriem, Heike .
JOURNAL OF FLUID MECHANICS, 2014, 755 :176-203
[36]  
SUN Q, 2003, CHINA PART, V1, P206
[38]   THE LINEAR ELASTIC PROPERTIES OF OPEN-CELL FOAMS [J].
WARREN, WE ;
KRAYNIK, AM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (02) :341-346
[39]   Free surface flow in high speed fiber drawing with large-diameter glass preforms [J].
Wei, ZY ;
Lee, KM ;
Tchikanda, SW ;
Zhou, Z ;
Hong, SP .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (05) :713-722
[40]   Radiative heat transfer in preforms for microstructured optical fibres [J].
Xue, S. -C. ;
Poladian, L. ;
Barton, G. W. ;
Large, M. C. J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (7-8) :1569-1576