MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

被引:38
作者
Jasion, G. T. [1 ]
Shrimpton, J. S. [2 ]
Chen, Y. [1 ]
Bradley, T. [1 ]
Richardson, D. J. [1 ]
Poletti, F. [1 ]
机构
[1] Univ Southampton, Optoelect Res Ctr, Fac Phys Sci & Engn, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会; 欧盟第七框架计划;
关键词
PHOTONIC CRYSTAL FIBERS; BANDGAP FIBERS; VISCOSITY; SILICA; FABRICATION; GENERATION; PREFORMS; LIGHT; SPEED; AIR;
D O I
10.1364/OE.23.000312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans. (C) 2015 Optical Society of America
引用
收藏
页码:312 / 329
页数:18
相关论文
共 42 条
[1]   Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J].
Benabid, F ;
Knight, JC ;
Antonopoulos, G ;
Russell, PSJ .
SCIENCE, 2002, 298 (5592) :399-402
[2]   Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section [J].
Chakravarthy, Srinath S. ;
Chiu, Wilson K. S. .
JOURNAL OF FLUID MECHANICS, 2009, 621 :155-182
[3]   Predicting hole sizes after fibre drawing without knowing the viscosity [J].
Chen, Y. ;
Birks, T. A. .
OPTICAL MATERIALS EXPRESS, 2013, 3 (03) :346-356
[4]   A computational method for generating the free-surface neck-down profile for glass flow in optical fiber drawing [J].
Choudhury, SR ;
Jaluria, Y ;
Lee, SHK .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1999, 35 (01) :1-24
[5]   Single-mode photonic band gap guidance of light in air [J].
Cregan, RF ;
Mangan, BJ ;
Knight, JC ;
Birks, TA ;
Russell, PS ;
Roberts, PJ ;
Allan, DC .
SCIENCE, 1999, 285 (5433) :1537-1539
[6]   Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2+2ν3 Vibrational Bands of Methane [J].
Cubillas, Ana M. ;
Lazaro, Jose M. ;
Conde, Olga M. ;
Petrovich, Marco N. ;
Lopez-Higuera, Jose M. .
SENSORS, 2009, 9 (08) :6261-6272
[7]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[8]   Viscosity of silica [J].
Doremus, RH .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) :7619-7629
[9]   The mathematical modelling of capillary drawing for holey fibre manufacture [J].
Fitt, AD ;
Furusawa, K ;
Monro, TM ;
Please, CP ;
Richardson, DJ .
JOURNAL OF ENGINEERING MATHEMATICS, 2002, 43 (2-4) :201-227
[10]   Impact of structural distortions on the performance of hollow-core photonic bandgap fibers [J].
Fokoua, Eric Numkam ;
Richardson, David J. ;
Poletti, Francesco .
OPTICS EXPRESS, 2014, 22 (03) :2735-2744