Generative Models as an Emerging Paradigm in the Chemical Sciences

被引:149
作者
Anstine, Dylan M. [1 ]
Isayev, Olexandr [1 ]
机构
[1] Carnegie Mellon Univ, Mellon Coll Sci, Dept Chem, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
DESIGN; ALGORITHMS; MOLECULES; NETWORKS; SEARCH;
D O I
10.1021/jacs.2c13467
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional computational approaches to design chemical species are limited by the need to compute properties for a vast number of candidates, e.g., by discriminative modeling. Therefore, inverse design methods aim to start from the desired property and optimize a corresponding chemical structure. From a machine learning viewpoint, the inverse design problem can be addressed through so-called generative modeling. Mathematically, discriminative models are defined by learning the probability distribution function of properties given the molecular or material structure. In contrast, a generative model seeks to exploit the joint probability of a chemical species with target characteristics. The overarching idea of generative modeling is to implement a system that produces novel compounds that are expected to have a desired set of chemical features, effectively sidestepping issues found in the forward design process. In this contribution, we overview and critically analyze popular generative algorithms like generative adversarial networks, variational autoencoders, flow, and diffusion models. We highlight key differences between each of the models, provide insights into recent success stories, and discuss outstanding challenges for realizing generative modeling discovered solutions in chemical applications.
引用
收藏
页码:8736 / 8750
页数:15
相关论文
共 127 条
[1]  
Ahn S., 2020, Advances in NeuralInformation Processing Systems, V2020, P12008
[2]   The 2019 materials by design roadmap [J].
Alberi, Kirstin ;
Nardelli, Marco Buongiorno ;
Zakutayev, Andriy ;
Mitas, Lubos ;
Curtarolo, Stefano ;
Jain, Anubhav ;
Fornari, Marco ;
Marzari, Nicola ;
Takeuchi, Ichiro ;
Green, Martin L. ;
Kanatzidis, Mercouri ;
Toney, Mike F. ;
Butenko, Sergiy ;
Meredig, Bryce ;
Lany, Stephan ;
Kattner, Ursula ;
Davydov, Albert ;
Toberer, Eric S. ;
Stevanovic, Vladan ;
Walsh, Aron ;
Park, Nam-Gyu ;
Aspuru-Guzik, Alan ;
Tabor, Daniel P. ;
Nelson, Jenny ;
Murphy, James ;
Setlur, Anant ;
Gregoire, John ;
Li, Hong ;
Xiao, Ruijuan ;
Ludwig, Alfred ;
Martin, Lane W. ;
Rappe, Andrew M. ;
Wei, Su-Huai ;
Perkins, John .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (01)
[3]  
Arjovsky M., 2017, Towards principled methods for training generative adversarial networks, DOI 10.48550/arXiv.1701.04862
[4]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[5]   Best practices in machine learning for chemistry comment [J].
Artrith, Nongnuch ;
Butler, Keith T. ;
Coudert, Francois-Xavier ;
Han, Seungwu ;
Isayev, Olexandr ;
Jain, Anubhav ;
Walsh, Aron .
NATURE CHEMISTRY, 2021, 13 (06) :505-508
[6]   Four Generations of High-Dimensional Neural Network Potentials [J].
Behler, Joerg .
CHEMICAL REVIEWS, 2021, 121 (16) :10037-10072
[7]   Generative models for molecular discovery: Recent advances and challenges [J].
Bilodeau, Camille ;
Jin, Wengong ;
Jaakkola, Tommi ;
Barzilay, Regina ;
Jensen, Klavs F. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (05)
[8]   REINVENT 2.0: An AI Tool for De Novo Drug Design [J].
Blaschke, Thomas ;
Arus-Pous, Josep ;
Chen, Hongming ;
Margreitter, Christian ;
Tyrchan, Christian ;
Engkvist, Ola ;
Papadopoulos, Kostas ;
Patronov, Atanas .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5918-5922
[9]   Pros and cons of GAN evaluation measures: New developments [J].
Borji, Ali .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 215
[10]   Pros and cons of GAN evaluation measures [J].
Borji, Ali .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 179 :41-65