Macro/Micro-Environment Regulating Carbon-Supported Single-Atom Catalysts for Hydrogen/Oxygen Conversion Reactions

被引:60
作者
Huo, Juanjuan [1 ,2 ]
Shen, Ziyan [1 ]
Cao, Xianjun [1 ]
Li, Lu [1 ]
Zhao, Yufei [1 ]
Liu, Hao [1 ,3 ,4 ]
Wang, Guoxiu [4 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Joint Int Lab Environm & Energy Frontier Mat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[3] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Zhengzhou 450002, Peoples R China
[4] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
hydrogen conversion reaction; macro; micro-environment; oxygen conversion reaction; single-atom catalysts; OXYGEN REDUCTION CATALYSIS; N-C CATALYST; HIGH-PERFORMANCE; IRON CATALYSTS; POROUS CARBON; ACTIVE-SITES; EFFICIENT; EVOLUTION; ELECTROCATALYSTS; GRAPHENE;
D O I
10.1002/smll.202202394
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts (SACs) have attracted tremendous research interest due to their unique atomic structure, maximized atom utilization, and remarkable catalytic performance. Among the SACs, the carbon-supported SACs have been widely investigated due to their easily controlled properties of the carbon substrates, such as the tunable morphologies, ordered porosity, and abundant anchoring sites. The electrochemical performance of carbon-supported SACs is highly related to the morphological structure of carbon substrates (macro-environment) and the local coordination environments of center metals (micro-environment). This review aims to provide a comprehensive summary on the macro/micro-environment regulating carbon-supported SACs for highly efficient hydrogen/oxygen conversion reactions. The authors first summarize the macro-environment engineering strategies of carbon-supported SACs with altered specific surface areas and porous properties of the carbon substrates, facilitating the mass diffusion kinetics and structural stability. Then the micro-environment engineering strategies of carbon-supported SACs are discussed with the regulated atomic structure and electronic structure of metal centers, boosting the catalytic performance. Insights into the correlation between the co-boosted effect from the macro/micro-environments and catalytic activity for hydrogen/oxygen conversion reactions are summarized and discussed. Finally, the challenges and perspectives are addressed in building highly efficient carbon-supported SACs for practical applications.
引用
收藏
页数:31
相关论文
共 162 条
[1]   Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions [J].
Ahsan, Md Ariful ;
Santiago, Alain R. Puente ;
Hong, Yu ;
Zhang, Ning ;
Cano, Manuel ;
Rodriguez-Castellon, Enrique ;
Echegoyen, Luis ;
Sreenivasan, Sreeprasad T. ;
Noveron, Juan C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (34) :14688-14701
[2]   A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction [J].
Bai, Lichen ;
Hsu, Chia-Shuo ;
Alexander, Duncan T. L. ;
Chen, Hao Ming ;
Hu, Xile .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (36) :14190-14199
[3]   Dual Evolution in Defect and Morphology of Single-Atom Dispersed Carbon Based Oxygen Electrocatalyst [J].
Ban, Jinjin ;
Wen, Xiaohan ;
Xu, Hongjie ;
Wang, Zhuo ;
Liu, Xinhong ;
Cao, Guoqin ;
Shao, Guosheng ;
Hu, Junhua .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (19)
[4]   Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction [J].
Cao, Linlin ;
Luo, Qiquan ;
Chen, Jiajia ;
Wang, Lan ;
Lin, Yue ;
Wang, Huijuan ;
Liu, Xiaokang ;
Shen, Xinyi ;
Zhang, Wei ;
Liu, Wei ;
Qi, Zeming ;
Jiang, Zheng ;
Yang, Jinlong ;
Yao, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Graphene-Supported Atomically Dispersed Metals as Bifunctional Catalysts for Next-Generation Batteries Based on Conversion Reactions [J].
Chen, Biao ;
Zhong, Xiongwei ;
Zhou, Guangmin ;
Zhao, Naiqin ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2022, 34 (05)
[6]   Dual Single-Atomic Ni-N4and Fe-N4Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis [J].
Chen, Jiangyue ;
Li, Hao ;
Fan, Chuang ;
Meng, Qingwei ;
Tang, Yawen ;
Qiu, Xiaoyu ;
Fu, Gengtao ;
Ma, Tianyi .
ADVANCED MATERIALS, 2020, 32 (30)
[7]   Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements [J].
Chen, Mengjie ;
Li, Xing ;
Yang, Fan ;
Li, Boyang ;
Stracensky, Thomas ;
Karakalos, Stavros ;
Mukerjee, Sanjeev ;
Jia, Qingying ;
Su, Dong ;
Wang, Guofeng ;
Wu, Gang ;
Xu, Hui .
ACS CATALYSIS, 2020, 10 (18) :10523-10534
[8]   Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Xing, Lili ;
Xu, Kun ;
Tong, Yun ;
Xie, Hui ;
Zhang, Lidong ;
Yan, Wensheng ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) :610-614
[9]   Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction [J].
Chen, Weiming ;
Luo, Xuanli ;
Ling, Sanliang ;
Zhou, Yongfang ;
Shen, Bihan ;
Slater, Thomas J. A. ;
Fernandes, Jesum Alves ;
Lin, Tingting ;
Wang, Jianshe ;
Shen, Yi .
CARBON, 2020, 168 :588-596
[10]   Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution [J].
Chen, Wenxing ;
Pei, Jiajing ;
He, Chun-Ting ;
Wan, Jiawei ;
Ren, Hanlin ;
Wang, Yu ;
Dong, Juncai ;
Wu, Konglin ;
Cheong, Weng-Chon ;
Mao, Junjie ;
Zheng, Xusheng ;
Yan, Wensheng ;
Zhuang, Zhongbin ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
ADVANCED MATERIALS, 2018, 30 (30)