Robust fractional order differentiators using generalized modulating functions method

被引:51
作者
Liu, Da-Yan [1 ,2 ]
Laleg-Kirati, Taous-Meriem [2 ]
机构
[1] Univ Orleans, PRISME EA 4229, INSA Ctr Val Loire, F-18022 Bourges, France
[2] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
关键词
Fractional order differentiator; Riemann-Liouville derivative; Generalized modulating functions method; Noise; CRONE CONTROL; DERIVATIVES; SCHEME;
D O I
10.1016/j.sigpro.2014.05.016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:395 / 406
页数:12
相关论文
共 50 条
[1]  
Abramowitz I., 1965, Handbook of Mathematical Functions
[2]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[3]  
[Anonymous], INT C FRACT SIGN SYS
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
[Anonymous], 2006, Journal of the Electrochemical Society
[6]   Digital fractional order operators for R-wave detection in electrocardiogram signal [J].
Benmalek, M. ;
Charef, A. .
IET SIGNAL PROCESSING, 2009, 3 (05) :381-391
[7]   Digital Fractional Order Savitzky-Golay Differentiator [J].
Chen, Dali ;
Chen, YangQuan ;
Xue, Dingyu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2011, 58 (11) :758-762
[8]   Batch scheme recursive parameter estimation of continuous-time systems using the modulating functions method [J].
Co, TB ;
Ungarala, S .
AUTOMATICA, 1997, 33 (06) :1185-1191
[9]   A recursive scheme for frequency estimation using the modulating functions method [J].
Fedele, Giuseppe ;
Coluccio, Loredana .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) :1393-1400
[10]  
Fliess, 2008, REV AFRICAINE INFORM, V9, P419