Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells

被引:46
作者
Kleiner, Karin [1 ,2 ]
Jakes, Peter [3 ]
Scharner, Sebastian [2 ]
Liebau, Verena [2 ]
Ehrenberg, Helmut [4 ]
机构
[1] KIT, IAM ESS, D-76344 Eggenstein Leopoldshafen, Germany
[2] BMW Grp, D-80788 Munich, Germany
[3] Forschungszentrum Julich, Inst Energy & Climate Res, D-52425 Julich, Germany
[4] KIT, Inst Solid State Phys IFP, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Balancing; Assigment of capacity losses to cell components; 3-electrode measurements; ELECTROCHEMICAL PROPERTIES; FAILURE MECHANISMS; AGING MECHANISMS; CAPACITY FADE; LI; ELECTRODES; LINI0.8CO0.15AL0.05O2; DISSOLUTION; VOLTAGE; METAL;
D O I
10.1016/j.jpowsour.2016.03.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrode balancing defines the state of charge (SoC) of a lithium-ion cell and is a crucial point considering lifetime and safe operation. The electrode balancing varies during fatigue which results in changes of the individual electrode potentials for fixed (dis-)charge voltages of the full-cell. Therefore the materials are cycled closer or beyond their electrochemical (meta-)stability window. This leads to accelerated degradation reactions or even to safety problems. The origin of the changes in the cell balancing is the limited amount of mobile lithium, which decreases during cycling due to the loss of lithiated active material a), the reduction of accessible lattice sites in the active materials b) and the loss of active lithium outside the electrodes c). In most of the commercial cells a) and b) can be attributed to the cathode, c) occurs due to reactions on the anode surface. Changes in the electrode balancing of three differently fatigued 7 Ah lithium-ion cells are investigated by electrochemical cycling of full- and half-cells, assembled from cell components of the fatigued 7 Ah cells. Based on these results the observed performance drop is assigned to a), b) or c) mentioned above and the capacity losses are quantified. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 33 条
[1]   Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells [J].
Abraham, DP ;
Twesten, RD ;
Balasubramanian, M ;
Petrov, I ;
McBreen, J ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (08) :620-625
[2]   Study of the Lithium-Rich Integrated Compound xLi2MnO3 • (1-x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and Its Electrochemical Activity as Positive Electrode in Lithium Cells [J].
Amalraj, Francis ;
Talianker, Michael ;
Markovsky, Boris ;
Sharon, Daniel ;
Burlaka, Luba ;
Shafir, Gilead ;
Zinigrad, Ella ;
Haik, Ortal ;
Aurbach, Doron ;
Lampert, Jordan ;
Schulz-Dobrick, Martin ;
Garsuch, Arnd .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (02) :A324-A337
[3]   Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications [J].
Amine, K ;
Liu, J ;
Kang, S ;
Belharouak, I ;
Hyung, Y ;
Vissers, D ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2004, 129 (01) :14-19
[4]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[5]  
[Anonymous], 2002, ADV LITHIUM ION BATT
[6]   Mechanisms of manganese spinels dissolution and capacity fade at high temperature [J].
Aoshima, T ;
Okahara, K ;
Kiyohara, C ;
Shizuka, K .
JOURNAL OF POWER SOURCES, 2001, 97-8 :377-380
[7]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[8]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[9]   IN-SITU FTIR SPECTROELECTROCHEMICAL STUDIES OF SURFACE-FILMS FORMED ON LI AND NONACTIVE ELECTRODES AT LOW POTENTIALS IN LI SALT-SOLUTIONS CONTAINING CO2 [J].
AURBACH, D ;
CHUSID, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (11) :L155-L157
[10]   Thermal stability of the Li(Ni0.8Co0.15Al0.05)O2 cathode in the presence of cell components [J].
Belharouak, I. ;
Vissers, D. ;
Amine, K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (11) :A2030-A2035