A unified semilocal convergence analysis of a family of iterative algorithms for computing all zeros of a polynomial simultaneously

被引:16
作者
Ivanov, Stoil I. [1 ]
机构
[1] Paisij Hilendarski Univ Plovdiv, Fac Phys, Plovdiv 4000, Bulgaria
关键词
Simultaneous methods; Polynomial zeros; Semilocal convergence; Error estimates; Location of zeros; Normed fields;
D O I
10.1007/s11075-016-0237-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first present a family of iterative algorithms for simultaneous determination of all zeros of a polynomial. This family contains two well-known algorithms: Dochev-Byrnev's method and Ehrlich's method. Second, using Proinov's approach to studying convergence of iterative methods for polynomial zeros, we provide a semilocal convergence theorem that unifies the results of Proinov (Appl. Math. Comput. 284: 102-114, 2016) for Dochev-Byrnev's and Ehrlich's methods.
引用
收藏
页码:1193 / 1204
页数:12
相关论文
共 29 条
[1]  
ABERTH O, 1973, MATH COMPUT, V27, P339, DOI 10.1090/S0025-5718-1973-0329236-7
[2]  
Borsch-Supan W., 1970, Numer. Math, V14, P287, DOI DOI 10.1007/BF02163336
[3]  
CARSTENSEN C, 1993, BIT, V33, P64, DOI 10.1007/BF01990344
[4]  
Dochev K., 1964, USSR Comput. Math. Math. Phy, V4, P174, DOI [10.1016/0041-5553(64)90148-X, DOI 10.1016/0041-5553(64)90148-X]
[5]   A MODIFIED NEWTON METHOD FOR POLYNOMIALS [J].
EHRLICH, LW .
COMMUNICATIONS OF THE ACM, 1967, 10 (02) :107-&
[6]  
Milovanovic G.V., 1974, U BEOGRAD PUBL EL MF, V470, P67
[7]  
Petkovic M., 2008, Lecture Notes in Mathematics, V1933
[8]   WEIERSTRASS FORMULA AND ZERO-FINDING METHODS [J].
PETKOVIC, MS ;
CARSTENSEN, C ;
TRAJKOVIC, M .
NUMERISCHE MATHEMATIK, 1995, 69 (03) :353-372
[9]   Safe convergence of simultaneous methods for polynomial zeros [J].
Petkovic, MS ;
Herceg, D ;
Ilic, S .
NUMERICAL ALGORITHMS, 1998, 17 (3-4) :313-331
[10]   Point estimation of simultaneous methods for solving polynomial equations: a survey [J].
Petkovic, MS ;
Herceg, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) :283-307