A Self-adjointness Criterion for the Schrodinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators

被引:3
作者
Kaminaga, Masahiro [1 ]
Mine, Takuya [2 ]
Nakano, Fumihiko [3 ]
机构
[1] Tohoku Gakuin Univ, Dept Informat Technol, Tagajo, Miyagi 9858537, Japan
[2] Kyoto Inst Technol, Fac Arts & Sci, Sakyo Ku, Kyoto 6068585, Japan
[3] Gakushuin Univ, Dept Math, Toshima Ku, Mejiro 1-1-5, Tokyo 1710031, Japan
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 02期
关键词
SPECTRAL THEORY;
D O I
10.1007/s00023-019-00869-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the Schrodinger operator with infinitely many point interactions in R-d (d = 1, 2, 3) is self-adjoint if the support Gamma of the interactions is decomposed into infinitely many bounded subsets {Gamma(j)}(j) such that inf(j not equal k) dist(Gamma(j), Gamma(k)) > 0. Using this fact, we prove the self-adjointness of the Schrodinger operator with point interactions on a random perturbation of a lattice or on the Poisson configuration. We also determine the spectrum of the Schrodinger operators with random point interactions of Poisson-Anderson type.
引用
收藏
页码:405 / 435
页数:31
相关论文
共 28 条
  • [1] Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2
  • [2] ALBEVERIO S, 1982, ADV APPL MATH, V3, P435, DOI DOI 10.1016/S0196-8858(82)80016-X
  • [3] The spectrum of Schrodinger operators with Poisson type random potential
    Ando, K
    Iwatsuka, A
    Kaminaga, M
    Nakano, F
    [J]. ANNALES HENRI POINCARE, 2006, 7 (01): : 145 - 160
  • [4] [Anonymous], 1965, Lectures on Elliptic Boundary Value Problems
  • [5] [Anonymous], 1964, Handbook of Mathematical Function with Formulas, Graphs and Mathematical Tables
  • [6] [Anonymous], 1975, Methods of Mathematical Physics
  • [7] BEREZIN F. A., 1961, World Sci. Ser. 21st Century Math., V2, P372
  • [8] Bethe H., 1935, P ROY SOC, V148, P146, DOI 10.1098/rspa.1935.0010
  • [9] Spectra of self-adjoint extensions and applications to solvable schrodinger operators
    Bruening, Jochen
    Geyler, Vladimir
    Pankrashkin, Konstantin
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (01) : 1 - 70
  • [10] SPECTRAL THEORY OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH POINT INTERACTIONS
    CHRIST, CS
    STOLZ, G
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) : 491 - 516