Continuous flow generation of magnetoliposomes in a low-cost portable microfluidic platform

被引:12
作者
Conde, Alvaro J. [1 ]
Batalla, Milena [2 ]
Cerda, Belen [2 ]
Mykhaylyk, Olga [3 ]
Plank, Christian [3 ]
Podhajcer, Osvaldo [4 ]
Cabaleiro, Juan M. [5 ,6 ]
Madrid, Rossana E. [1 ]
Policastro, Lucia [2 ]
机构
[1] Univ Nacl Tucuman, CONICET, Inst Super Invest Biol, LAMEIN,Dept Bioingn,Fac Ciencias Exacts & Technol, RA-4000 San Miguel De Tucuman, Tucuman, Argentina
[2] Comis Nacl Energia Atom, CONICET, Lab Nanomed, Inst Nanociencia & Nanotecnol, RA-1429 Buenos Aires, DF, Argentina
[3] Tech Univ Munich, Inst Expt Oncol & Therapy Res, D-81675 Munich, Germany
[4] Fdn Inst Leloir, Lab Terapia Mol & Celular, Buenos Aires, DF, Argentina
[5] Univ Buenos Aires, Fac Ingn, CONICET, Lab Fluidodinam, Buenos Aires, DF, Argentina
[6] Univ Marina Mercante, Lab Micro & Nanofluid & Plasma, Buenos Aires, DF, Argentina
关键词
GENE DELIVERY; IN-VITRO; LIPOSOMES; CHEMOTHERAPY; NANOPARTICLES; VESICLES; DEVICES; DESIGN; SYSTEM;
D O I
10.1039/c4lc00839a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a low-cost, portable microfluidic platform that uses laminated polymethylmethacrylate chips, peristaltic micropumps and LEGO (R) Mindstorms components for the generation of magnetoliposomes that does not require extrusion steps. Mixtures of lipids reconstituted in ethanol and an aqueous phase were injected independently in order to generate a combination of laminar flows in such a way that we could effectively achieve four hydrodynamic focused nanovesicle generation streams. Monodisperse magnetoliposomes with characteristics comparable to those obtained by traditional methods have been obtained. The magnetoliposomes are responsive to external magnetic field gradients, a result that suggests that the nanovesicles can be used in research and applications in nanomedicine.
引用
收藏
页码:4506 / 4512
页数:7
相关论文
共 31 条
[1]  
Archambeau F., 2004, International Journal on Finite Volumes, V1, P1, DOI DOI 10.1016/J.COMPFLUID.2008.12.005
[2]   Critical factors influencing prion inactivation by sodium hydroxide [J].
Bauman, P. A. ;
Lawrence, L. A. ;
Biesert, L. ;
Dichtelmueller, H. ;
Fabbrizzi, F. ;
Gajardo, R. ;
Gröner, A. ;
Jorquera, J. I. ;
Kempf, C. ;
Kreil, T. R. ;
von Hoegen, I. ;
Pifat, D. Y. ;
Petteway, S. R., Jr. ;
Cai, K. .
VOX SANGUINIS, 2006, 91 (01) :34-40
[3]  
Cuyper M. D., 1988, EUR BIOPHYS J, V15, P311
[4]   The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting [J].
Dandamudi, Suman ;
Campbell, Robert B. .
BIOMATERIALS, 2007, 28 (31) :4673-4683
[5]   18F Labeled Nanoparticles for in Vivo PET-CT Imaging [J].
Devaraj, Neat K. ;
Keliher, Edmund J. ;
Thurber, Greg M. ;
Nahrendorf, Matthias ;
Weissleder, Ralph .
BIOCONJUGATE CHEMISTRY, 2009, 20 (02) :397-401
[6]   Microfluidic Synthesis of PEG- and Folate-Conjugated Liposomes for One-Step Formation of Targeted Stealth Nanocarriers [J].
Hood, Renee R. ;
Shao, Chenren ;
Omiatek, Donna M. ;
Vreeland, Wyatt N. ;
DeVoe, Don L. .
PHARMACEUTICAL RESEARCH, 2013, 30 (06) :1597-1607
[7]  
Huang XM, 2010, ANTICANCER RES, V30, P463
[8]   Mixing small volumes for continuous high-throughput flow cytometry: Performance of a mixing Y and peristaltic sample delivery [J].
Jackson, WC ;
Kuckuck, F ;
Edwards, BS ;
Mammoli, A ;
Gallegos, CM ;
Lopez, GP ;
Buranda, T ;
Sklar, LA .
CYTOMETRY, 2002, 47 (03) :183-191
[9]   Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing [J].
Jahn, A ;
Vreeland, WN ;
Gaitan, M ;
Locascio, LE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (09) :2674-2675
[10]   Microfluidic directed formation of liposomes of controlled size [J].
Jahn, Andreas ;
Vreeland, Wyatt N. ;
DeVoe, Don L. ;
Locascio, Laurie E. ;
Gaitan, Michael .
LANGMUIR, 2007, 23 (11) :6289-6293