TRAVEL TIME TOMOGRAPHY WITH FORMALLY DETERMINED INCOMPLETE DATA IN 3D

被引:14
作者
Klibanov, Michael, V [1 ]
机构
[1] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
Inverse kinematic problem; Carleman-like estimate for the Volterra operator; Lipschitz stability; convexification; globally convergent numerical method; INVERSE; CONVEXITY;
D O I
10.3934/ipi.2019060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the first time, a globally convergent numerical method is developed and Lipschitz stability estimate is obtained for the challenging problem of travel time tomography in 3D for formally determined incomplete data. The semidiscrete case is considered meaning that finite differences are involved with respect to two out of three variables. First, Lipschitz stability estimate is derived, which implies uniqueness. Next, a weighted globally strictly convex Tikhonov-like functional is constructed using a Carleman-like weight function for a Volterra integral operator. The gradient projection method is constructed to minimize this functional. It is proven that this method converges globally to the exact solution if the noise in the data tends to zero.
引用
收藏
页码:1367 / 1393
页数:27
相关论文
共 35 条
[1]  
[Anonymous], 2012, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, DOI DOI 10.1007/978-1-4419-7805-9
[2]   Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs [J].
Bakushinskii, Anatoly B. ;
Klibanov, Michael V. ;
Koshev, Nikolaj A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 :201-224
[3]  
BERNSTEIN IN, 1978, DOKL AKAD NAUK SSSR+, V243, P302
[4]  
BUKHGEIM AL, 1981, DOKL AKAD NAUK SSSR+, V260, P269
[5]   Inversion of weighted Radon transforms via finite Fourier series weight approximations [J].
Guillement, J. -P. ;
Novikov, R. G. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (05) :787-802
[6]  
Herglotz G., 1905, Zeitschr. fr Math. Phys, V52, P275
[7]  
Kabanikhin S. I., 2005, INVERSE ILL POSED PR
[8]   Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem [J].
Kabanikhin, Sergey I. ;
Novikov, Nikita S. ;
Oseledets, Ivan V. ;
Shishlenin, Maxim A. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (06) :687-700
[9]  
Kabanikhin SI, 2015, J INVERSE ILL-POSE P, V23, P439, DOI [10.1515/jip-2014-0018, 10.1515/jiip-2014-0018]
[10]  
KLIBANOV M. V., 2004, INVER ILL POSED PROB, DOI 10.1515/9783110915549