A new public key cryptosystem based on Edwards curves

被引:1
作者
Boudabra, Maher [1 ]
Nitaj, Abderrahmane [2 ]
机构
[1] Univ Monastir, Monastir, Tunisia
[2] Univ Caen Normandie, Lab Math Nicolas Oresme, Caen, France
关键词
Elliptic curves; Twisted Edwards curves; RSA cryptosystem; KMOV cryptosystem;
D O I
10.1007/s12190-019-01257-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The elliptic curve cryptography plays a central role in various cryptographic schemes and protocols. For efficiency reasons, Edwards curves and twisted Edwards curves have been introduced. In this paper, we study the properties of twisted Edwards curves on the ring Z/nZ where n=p(r)q(s) is a prime power RSA modulus and propose a new scheme and study its efficiency and security.
引用
收藏
页码:431 / 450
页数:20
相关论文
共 18 条
[11]  
Ireland K., 1990, A Classical Introduction to Modern Number Theory, V2
[12]  
KOYAMA K, 1991, P ANN INT CRYPT C CR, P252
[13]   FACTORING INTEGERS WITH ELLIPTIC-CURVES [J].
LENSTRA, HW .
ANNALS OF MATHEMATICS, 1987, 126 (03) :649-673
[14]   New Attacks on RSA with Moduli N = prq [J].
Nitaj, Abderrahmane ;
Rachidi, Tajjeeddine .
CODES, CRYPTOLOGY, AND INFORMATION SECURITY, C2SI 2015, 2015, 9084 :352-360
[15]  
Okamoto T, 1998, LECT NOTES COMPUT SC, V1403, P308, DOI 10.1007/BFb0054135
[16]  
RIVEST RL, 1978, COMMUN ACM, V21, P120, DOI [10.1145/359340.359342, 10.1145/357980.358017]
[17]   Revisiting Prime Power RSA [J].
Sarkar, Santanu .
DISCRETE APPLIED MATHEMATICS, 2016, 203 :127-133
[18]  
Schmitt S., 2003, Elliptic Curves A Computational Approach