A new public key cryptosystem based on Edwards curves

被引:1
作者
Boudabra, Maher [1 ]
Nitaj, Abderrahmane [2 ]
机构
[1] Univ Monastir, Monastir, Tunisia
[2] Univ Caen Normandie, Lab Math Nicolas Oresme, Caen, France
关键词
Elliptic curves; Twisted Edwards curves; RSA cryptosystem; KMOV cryptosystem;
D O I
10.1007/s12190-019-01257-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The elliptic curve cryptography plays a central role in various cryptographic schemes and protocols. For efficiency reasons, Edwards curves and twisted Edwards curves have been introduced. In this paper, we study the properties of twisted Edwards curves on the ring Z/nZ where n=p(r)q(s) is a prime power RSA modulus and propose a new scheme and study its efficiency and security.
引用
收藏
页码:431 / 450
页数:20
相关论文
共 18 条
[1]  
[Anonymous], 2008, ELLIPTIC CURVES NUMB, DOI DOI 10.1201/9781420071474
[2]  
Bernstein D.J., 2007, Explicit formulas database
[3]  
Bernstein DJ, 2008, LECT NOTES COMPUT SC, V5023, P389
[4]  
Bernstein DJ, 2007, LECT NOTES COMPUT SC, V4833, P29
[5]  
Boneh D., 1999, Advances in Cryptology - CRYPTO'99. 19th Annual International Cryptology Conference. Proceedings, P326
[6]   A new generalization of the KMOV cryptosystem [J].
Boudabra, Maher ;
Nitaj, Abderrahmane .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) :229-245
[7]  
BRESSOUD DM, 1989, UNDERGRADUATE TEXTS
[8]   Small solutions to polynomial equations, and low exponent RSA vulnerabilities [J].
Coppersmith, D .
JOURNAL OF CRYPTOLOGY, 1997, 10 (04) :233-260
[9]   A normal form for elliptic curves [J].
Edwards, Harold M. .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :393-422
[10]  
FUJIOKA A, 1991, LECT NOTES COMPUT SC, V547, P446