Surface coverage dependent mechanisms for the absorption and desorption of hydrogen from the W(110) and W(100) surfaces: a density functional theory investigation

被引:26
作者
Ajmalghan, M. [1 ]
Piazza, Z. A. [1 ]
Hodille, E. A. [2 ]
Ferro, Y. [1 ]
机构
[1] Aix Marseille Univ, CNRS, PIIM, Marseille, France
[2] Univ Helsinki, Dept Phys, POB 43, FIN-00014 Helsinki, Finland
关键词
tungsten; hydrogen; surface; DFT; activation barriers; coverage; desorption; DEUTERIUM RETENTION; MOLECULAR-DYNAMICS; NUCLEAR-REACTION; ATOMIC-HYDROGEN; FUEL RETENTION; IN-SITU; TUNGSTEN; DIFFUSION; VACANCY; TEMPERATURE;
D O I
10.1088/1741-4326/ab33e7
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Herein we investigate absorption and desorption of hydrogen in the sub-surface of tungsten via density functional theory. Both the near-surface diffusion and recombination of a bulk hydrogen atom with a hydrogen atom adsorbed upon the W(110) and W(100) surfaces are investigated at various surface adsorption coverage ratios. This study intends to model the desorption processes occurring during thermal-desorption spectroscopy experiments and the absorption of hydrogen during gaseous or low energy atomic exposure. Since the diffusion and recombination processes are expected to change as the hydrogen coverage of the surface varies, different coverage ratios were investigated on both surfaces. We found that at a saturation coverage of hydrogen on both surfaces, the activation barriers for the recombination of molecular hydrogen are below 0.8 eV. On the contrary, below saturation, the activation barriers for recombination rise to 1.35 eV and 1.51 eV depending on the coverage and on the orientation of the surface. Regarding the absorption of atomic hydrogen from the surface into the bulk, the activation barrier raises from less than 1.0 eV at saturation to around 1.7 eV below saturation on both surfaces. These results indicate that surface mechanisms certainly play a significant role in the kinetics of desorption of hydrogen from tungsten; it is also expected that surface mechanisms affect the total amount on hydrogen absorbed in tungsten during implantation.
引用
收藏
页数:12
相关论文
共 79 条
[1]   Simulation of irradiation induced deuterium trapping in tungsten [J].
Ahlgren, T. ;
Heinola, K. ;
Vortler, K. ;
Keinonen, J. .
JOURNAL OF NUCLEAR MATERIALS, 2012, 427 (1-3) :152-161
[2]   Differential cross-section of the D(3He, p)4He nuclear reaction and depth profiling of deuterium up to large depths [J].
Alimov, VK ;
Mayer, M ;
Roth, J .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 234 (03) :169-175
[3]   ADSORPTION AND DESORPTION-KINETICS WITH NO PRECURSOR TRAPPING - HYDROGEN AND DEUTERIUM ON W(100) [J].
ALNOT, P ;
CASSUTO, A ;
KING, DA .
SURFACE SCIENCE, 1989, 215 (1-2) :29-46
[4]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[5]   Numerical simulation of the transient hydrogen trapping process using an analytical approximation of the McNabb and Foster equation [J].
Benannoune, Sofiane ;
Charles, Yann ;
Mougenot, Jonathan ;
Gasperini, Monique .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (18) :9083-9093
[6]   Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature [J].
Bisson, R. ;
Markelj, S. ;
Mourey, O. ;
Ghiorghiu, F. ;
Achkasov, K. ;
Layet, J. -M. ;
Roubin, P. ;
Cartry, G. ;
Grisolia, C. ;
Angot, T. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 467 :432-438
[7]   Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification [J].
Brezinsek, S. ;
Coenen, J. W. ;
Schwarz-Selinger, T. ;
Schmid, K. ;
Kirschner, A. ;
Hakola, A. ;
Tabares, F. L. ;
van der Meiden, H. J. ;
Mayoral, M. -L. ;
Reinhart, M. ;
Tsitrone, E. ;
Ahlgren, T. ;
Aints, M. ;
Airila, M. ;
Almaviva, S. ;
Alves, E. ;
Angot, T. ;
Anita, V. ;
Parra, R. Arredondo ;
Aumayr, F. ;
Balden, M. ;
Bauer, J. ;
Ben Yaala, M. ;
Berger, B. M. ;
Bisson, R. ;
Bjorkas, C. ;
Radovic, I. Bogdanovic ;
Borodin, D. ;
Bucalossi, J. ;
Butikova, J. ;
Butoi, B. ;
Cadez, I. ;
Caniello, R. ;
Caneve, L. ;
Cartry, G. ;
Catarino, N. ;
Cekada, M. ;
Ciraolo, G. ;
Ciupinski, L. ;
Colao, F. ;
Corre, Y. ;
Costin, C. ;
Craciunescu, T. ;
Cremona, A. ;
De Angeli, M. ;
de Castro, A. ;
Dejarnac, R. ;
Dellasega, D. ;
Dinca, P. ;
Dittmar, T. .
NUCLEAR FUSION, 2017, 57 (11)
[8]   The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment [J].
Bucalossi, J. ;
Missirlian, M. ;
Moreau, P. ;
Samaille, F. ;
Tsitrone, E. ;
van Houtte, D. ;
Batal, T. ;
Bourdelle, C. ;
Chantant, M. ;
Corre, Y. ;
Courtois, X. ;
Delpech, L. ;
Doceul, L. ;
Douai, D. ;
Dougnac, H. ;
Faisse, F. ;
Fenzi, C. ;
Ferlay, F. ;
Firdaouss, M. ;
Gargiulo, L. ;
Garin, P. ;
Gil, C. ;
Grosman, A. ;
Guilhem, D. ;
Gunn, J. ;
Hernandez, C. ;
Keller, D. ;
Larroque, S. ;
Leroux, F. ;
Lipa, M. ;
Lotte, P. ;
Martinez, A. ;
Meyer, O. ;
Micolon, F. ;
Mollard, P. ;
Nardon, E. ;
Nouailletas, R. ;
Pilia, A. ;
Richou, M. ;
Salasca, S. ;
Travère, J. -M. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :907-912
[9]   Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons [J].
Causey, R ;
Wilson, K ;
Venhaus, T ;
Wampler, WR .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 :467-471
[10]   Hydrogen isotope retention and recycling in fusion reactor plasma-facing components [J].
Causey, RA .
JOURNAL OF NUCLEAR MATERIALS, 2002, 300 (2-3) :91-117