Some inequalities for k-colored partition functions

被引:19
作者
Chern, Shane [1 ]
Fu, Shishuo [2 ]
Tang, Dazhao [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Chongqing Univ, Coll Math & Stat, Huxi Campus LD506, Chongqing 401331, Peoples R China
[3] Chongqing Univ, Coll Math & Stat, Huxi Campus LD206, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; Partition inequality; Multiplicative property; MULTIPLICATIVE PROPERTIES;
D O I
10.1007/s11139-017-9989-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a partition inequality of Bessenrodt and Ono, we obtain analogous inequalities for k-colored partition functions for all . This enables us to extend the k-colored partition function multiplicatively to a function on k-colored partitions and characterize when it has a unique maximum. We conclude with one conjectural inequality that strengthens our results.
引用
收藏
页码:713 / 725
页数:13
相关论文
共 8 条
[1]   Combinatorial Proof of a Partition Inequality of Bessenrodt-Ono [J].
Alanazi, Abdulaziz A. ;
Gagola, Stephen M., III ;
Munagi, Augustine O. .
ANNALS OF COMBINATORICS, 2017, 21 (03) :331-337
[2]  
Andrews G., 1984, ENCY MATH ITS APPL, V2
[3]  
Andrews G.E., 2004, Integer Partitions
[4]   Multiplicative Properties of the Number of k-Regular Partitions [J].
Beckwith, Olivia ;
Bessenrodt, Christine .
ANNALS OF COMBINATORICS, 2016, 20 (02) :231-250
[5]   Maximal Multiplicative Properties of Partitions [J].
Bessenrodt, Christine ;
Ono, Ken .
ANNALS OF COMBINATORICS, 2016, 20 (01) :59-64
[6]   Log-concavity of the partition function [J].
DeSalvo, Stephen ;
Pak, Igor .
RAMANUJAN JOURNAL, 2015, 38 (01) :61-73
[7]   On a generalized crank for k-colored partitions [J].
Fu, Shishuo ;
Tang, Dazhao .
JOURNAL OF NUMBER THEORY, 2018, 184 :485-497
[8]  
Hou E., 2017, RAMANUJAN J