Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations

被引:154
作者
Guan, Zhen [1 ]
Lowengrub, John S. [1 ]
Wang, Cheng [2 ,3 ]
Wise, Steven M. [4 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Massachusetts Dartmouth, Dept Math, N Dartmouth, MA 02747 USA
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
[4] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Nonlocal Cahn-Hilliard equation; Energy stability; Unique solvability; Multigrid; DENSITY-FUNCTIONAL THEORY; FINITE-ELEMENT APPROXIMATION; PHASE SEGREGATION DYNAMICS; LONG-RANGE INTERACTIONS; NONLINEAR TUMOR-GROWTH; MESOSCOPIC MODELS; PARTICLE-SYSTEMS; BOUNDARY-PROBLEM; INTERFACE; DIFFERENCE;
D O I
10.1016/j.jcp.2014.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We devise second-order accurate, unconditionally uniquely solvable and unconditionally energy stable schemes for the nonlocal Cahn-Hilliard (nCH) and nonlocal Allen-Cahn (nAC) equations for a large class of interaction kernels. We present numerical evidence that both schemes are convergent. We solve the nonlinear equations resulting from discretization using an efficient nonlinear multigrid method and demonstrate the performance of our algorithms by simulating nucleation and crystal growth for several different choices of interaction kernels. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 71
页数:24
相关论文
共 58 条
[1]   Long-time integration methods for mesoscopic models of pattern-forming systems [J].
Abukhdeir, Nasser Mohieddin ;
Vlachos, Dionisios G. ;
Katsoulakis, Markos ;
Plexousakis, Michael .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (14) :5704-5715
[2]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[3]   Numerical valuation of options with jumps in the underlying [J].
Almendral, A ;
Oosterlee, CW .
APPLIED NUMERICAL MATHEMATICS, 2005, 53 (01) :1-18
[4]  
[Anonymous], CONTIN MECH THERMODY
[5]   Solidification fronts in supercooled liquids: How rapid fronts can lead to disordered glassy solids [J].
Archer, A. J. ;
Robbins, M. J. ;
Thiele, U. ;
Knobloch, E. .
PHYSICAL REVIEW E, 2012, 86 (03)
[6]   Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic? [J].
Archer, AJ ;
Rauscher, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (40) :9325-9333
[7]   Dynamical density functional theory and its application to spinodal decomposition [J].
Archer, AJ ;
Evans, R .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (09) :4246-4254
[8]   Two-dimensional fluid with competing interactions exhibiting microphase separation: Theory for bulk and interfacial properties [J].
Archer, Andrew J. .
PHYSICAL REVIEW E, 2008, 78 (03)
[9]   A continuum approach to modelling cell-cell adhesion [J].
Armstrong, Nicola J. ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (01) :98-113
[10]   Adding Adhesion to a Chemical Signaling Model for Somite Formation [J].
Armstrong, Nicola J. ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (01) :1-24