Alternating projection method for doubly stochastic inverse eigenvalue problems with partial eigendata

被引:2
|
作者
Chen, Meixiang [1 ]
Weng, Zhifeng [1 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2021年 / 40卷 / 05期
关键词
Doubly stochastic matrix; Inverse eigenvalue problems; Alternating projection method; Convergence analysis; CONJUGATE-GRADIENT METHOD; MATRICES;
D O I
10.1007/s40314-021-01549-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider doubly stochastic inverse eigenvalue problems with partial eigendata, which aims to construct a doubly stochastic matrix from the prescribed partial eigendata. We propose the alternating projection method for two closed convex sets to solve the doubly stochastic inverse eigenvalue problems. And each subproblem in the alternating projection method can be solved easily. Under the assumption that the intersection of the two closed convex sets is not empty, the convergence of the alternating projection method is proved. Numerical results illustrate the effectiveness of our method.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] AN INVERSE ITERATION METHOD FOR EIGENVALUE PROBLEMS WITH EIGENVECTOR NONLINEARITIES
    Jarlebring, Elias
    Kvaal, Simen
    Michiels, Wim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1978 - A2001
  • [42] Alternating projection method for sparse model updating problems
    Dong, Bo
    Yu, Yan
    Tian, Dan Dan
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 159 - 173
  • [43] A Generalized Inexact Newton Method for Inverse Eigenvalue Problems
    Shen, Weiping
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [44] Direct method of inverse eigenvalue problems for structure redesign
    Wu, LS
    JOURNAL OF MECHANICAL DESIGN, 2003, 125 (04) : 845 - 847
  • [45] An inexact Cayley transform method for inverse eigenvalue problems
    Bai, ZJ
    Chan, RH
    Morini, B
    INVERSE PROBLEMS, 2004, 20 (05) : 1675 - 1689
  • [46] Alternating projection method for sparse model updating problems
    Bo Dong
    Yan Yu
    Dan Dan Tian
    Journal of Engineering Mathematics, 2015, 93 : 159 - 173
  • [47] A Ulm-like method for inverse eigenvalue problems
    Shen, W. P.
    Li, C.
    Jin, X. Q.
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (03) : 356 - 367
  • [48] A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure
    Bai, Zheng-Jian
    Chu, Delin
    Sun, Defeng
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06): : 2531 - 2561
  • [49] On the Partial Inverse Problems for the Transmission Eigenvalue Problem of the Schrödinger Operator
    Qiao-Qiao Xu
    Xiao-Chuan Xu
    Results in Mathematics, 2021, 76
  • [50] A Riesz-projection-based method for nonlinear eigenvalue problems
    Binkowski, Felix
    Zschiedrich, Lin
    Burger, Sven
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419