Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation

被引:95
作者
Liang, Chunyan [1 ,2 ]
Zhan, Chen [1 ,2 ]
Zeng, Fanyu [1 ,2 ]
Xu, Dandan [1 ,2 ]
Wang, Yong [1 ,2 ]
Zhao, Weiwei [1 ,2 ,3 ]
Zhang, Jiaheng [1 ,2 ]
Guo, Jinhong [4 ]
Feng, Huanhuan [1 ,2 ]
Ma, Xing [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol Shenzhen, State Key Lab Adv Welding & Joining, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Flexible Printed Elect Technol Ctr, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Heilongjiang, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China
关键词
micromotors; self-propulsion; environmental monitoring; environmental remediation; bubble propulsion; RAMAN-SCATTERING; CATALYTIC NANOMOTORS; RHODAMINE; 6G; MICRO; FABRICATION; MOLECULES; REMOVAL; ANATASE; NANOPARTICLES; SPECTROSCOPY;
D O I
10.1021/acsami.8b10921
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
There are two main aspects of environmental governance including monitoring and remediation, both of which are essential for environmental protection. Self-propelled micro/nanomotors (MNM) have shown promising potential for achieving on-demand tasks in environmental field, including environmental sensing and pollutant removal or degradation. However, most of the current MNM used in environmental protection can hardly accomplish the two major tasks of both monitoring and pollutant degradation. Hereby, we present a bubble-propelled mesoporous silica coated titania (TiO2@mSiO(2)) bilayer tubular micromotor with platinum (Pt) and magnetic Fe3O4 nanoparticles modified on their inner walls. The outer mesoporous silica (mSiO(2)) layer can effectively adsorb and collect the pollutants, and the adsorption capacity of the TiO2@mSiO(2) tube is about 3 times higher than that of the TiO2 tube due to the presence of mSiO(2) shell. By magnetic manipulation, the micromotors can be recovered to release the collected pollutant for precise analysis of the composition of the pollutants, such us pollutant molecule identification by surface-enhanced Raman scattering. The active motion and photocatalytic TiO2 inner layer of the micromotors can greatly enhance the degradation rate of the model pollutant rhodamine 6G (R6G). Our results show that within 30 min, up to 98% of R6G can be degraded by the motors. The successful demonstration of the TiO(2)pmSiO(2) bilayer tubular motors for simultaneous environmental monitoring and pollutant degradation paves the way for future development of active and intelligent micro/nanorobots for advanced environmental governance.
引用
收藏
页码:35099 / 35107
页数:9
相关论文
共 61 条
[1]   Catalytic Janus Motors on Microfluidic Chip: Deterministic Motion for Targeted Cargo Delivery [J].
Baraban, Larysa ;
Makarov, Denys ;
Streubel, Robert ;
Moench, Ingolf ;
Grimm, Daniel ;
Sanchez, Samuel ;
Schmidt, Oliver G. .
ACS NANO, 2012, 6 (04) :3383-3389
[2]   Sensing based on the motion of enzyme-modified nanorods [J].
Bunea, Ada-Ioana ;
Pavel, Ileana-Alexandra ;
David, Sorin ;
Gaspar, Szilveszter .
BIOSENSORS & BIOELECTRONICS, 2015, 67 :42-48
[3]   Bacterial Isolation by Lectin-Modified Microengines [J].
Campuzano, Susana ;
Orozco, Jahir ;
Kagan, Daniel ;
Guix, Maria ;
Gao, Wei ;
Sattayasamitsathit, Sirilak ;
Claussen, Jonathan C. ;
Merkoci, Arben ;
Wang, Joseph .
NANO LETTERS, 2012, 12 (01) :396-401
[4]   Mobile microrobots for bioengineering applications [J].
Ceylan, Hakan ;
Giltinan, Joshua ;
Kozielski, Kristen ;
Sitti, Metin .
LAB ON A CHIP, 2017, 17 (10) :1705-1724
[5]   Magnesium-Based Micromotors: Water-Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications [J].
Chen, Chuanrui ;
Karshalev, Emil ;
Guan, Jianguo ;
Wang, Joseph .
SMALL, 2018, 14 (23)
[6]   Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone [J].
Draz, Mohamed Shehata ;
Lakshminaraasimulu, Nivethitha Kota ;
Krishnakumar, Sanchana ;
Battalapalli, Dheerendranath ;
Vasan, Anish ;
Kanakasabaathy, Manoj Kumar ;
Sreeram, Aparna ;
Kallakuri, Shantanu ;
Thirumalaraju, Prudhvi ;
Li, Yudong ;
Hua, Stephane ;
Yu, Xu G. ;
Kuritzkes, Daniel R. ;
Shafiee, Hadi .
ACS NANO, 2018, 12 (06) :5709-5718
[7]   Electrokinetic effects in catalytic platinum-insulator Janus swimmers [J].
Ebbens, S. ;
Gregory, D. A. ;
Dunderdale, G. ;
Howse, J. R. ;
Ibrahim, Y. ;
Liverpool, T. B. ;
Golestanian, R. .
EPL, 2014, 106 (05)
[8]   The Environmental Impact of Micro/Nanomachines. A Review [J].
Gao, Wei ;
Wang, Joseph .
ACS NANO, 2014, 8 (04) :3170-3180
[9]   Catalytically propelled micro-/nanomotors: how fast can they move? [J].
Gao, Wei ;
Sattayasamitsathit, Sirilak ;
Wang, Joseph .
CHEMICAL RECORD, 2012, 12 (01) :224-231
[10]   Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes [J].
Gao, Wei ;
Sattayasamitsathit, Sirilak ;
Orozco, Jahir ;
Wang, Joseph .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) :11862-11864