Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer

被引:20
作者
Souri, E. Amiri [1 ]
Chenoweth, A. [2 ,3 ,4 ,5 ]
Cheung, A. [2 ,3 ,4 ,5 ]
Karagiannis, S. N. [2 ,3 ,4 ,5 ]
Tsoka, S. [1 ]
机构
[1] Kings Coll London, Fac Nat & Math Sci, Dept Informat, London, England
[2] Kings Coll London, Sch Basic & Med Biosci, St Johns Inst Dermatol, London, England
[3] Guys & St Thomas Hosp, NIHR Biomed Res Ctr, London, England
[4] Kings Coll London, London, England
[5] Kings Coll London, Guys Canc Ctr, Sch Canc & Pharmaceut Sci, Breast Canc Now Res Unit, London, England
基金
英国医学研究理事会;
关键词
R/BIOCONDUCTOR PACKAGE; INFORMATION; RECURRENCE; SIGNATURES; PREDICTOR; SUBTYPES; THERAPY;
D O I
10.1038/s41416-021-01455-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Prognostic stratification of breast cancers remains a challenge to improve clinical decision making. We employ machine learning on breast cancer transcriptomics from multiple studies to link the expression of specific genes to histological grade and classify tumours into a more or less aggressive prognostic type. Materials and methods Microarray data of 5031 untreated breast tumours spanning 33 published datasets and corresponding clinical data were integrated. A machine learning model based on gradient boosted trees was trained on histological grade-1 and grade-3 samples. The resulting predictive model (Cancer Grade Model, CGM) was applied on samples of grade-2 and unknown-grade (3029) for prognostic risk classification. Results A 70-gene signature for assessing clinical risk was identified and was shown to be 90% accurate when tested on known histological-grade samples. The predictive framework was validated through survival analysis and showed robust prognostic performance. CGM was cross-referenced with existing genomic tests and demonstrated the competitive predictive power of tumour risk. Conclusions CGM is able to classify tumours into better-defined prognostic categories without employing information on tumour size, stage, or subgroups. The model offers means to improve prognosis and support the clinical decision and precision treatments, thereby potentially contributing to preventing underdiagnosis of high-risk tumours and minimising over-treatment of low-risk disease.
引用
收藏
页码:748 / 758
页数:11
相关论文
共 64 条
[21]   Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2009 [J].
Goldhirsch, A. ;
Ingle, J. N. ;
Gelber, R. D. ;
Coates, A. S. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2009, 20 (08) :1319-1329
[22]   Machine learning for tissue diagnostics in oncology: brave new world [J].
Halama, Niels .
BRITISH JOURNAL OF CANCER, 2019, 121 (06) :431-433
[23]  
Harbeck N, 2019, NAT REV DIS PRIMERS, V5, DOI [10.1038/s41572-019-0111-2, 10.1038/s41572-019-0122-z]
[24]   Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline [J].
Harris, Lyndsay N. ;
Ismaila, Nofisat ;
McShane, Lisa M. ;
Andre, Fabrice ;
Collyar, Deborah E. ;
Gonzalez-Angulo, Ana M. ;
Hammond, Elizabeth H. ;
Kuderer, Nicole M. ;
Liu, Minetta C. ;
Mennel, Robert G. ;
Van Poznak, Catherine ;
Bast, Robert C. ;
Hayes, Daniel F. .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (10) :1134-+
[25]   The molecular portraits of breast tumors are conserved across microarray platforms [J].
Hu, Zhiyuan ;
Fan, Cheng ;
Oh, Daniel S. ;
Marron, J. S. ;
He, Xiaping ;
Qaqish, Bahjat F. ;
Livasy, Chad ;
Carey, Lisa A. ;
Reynolds, Evangeline ;
Dressler, Lynn ;
Nobel, Andrew ;
Parker, Joel ;
Ewend, Matthew G. ;
Sawyer, Lynda R. ;
Wu, Junyuan ;
Liu, Yudong ;
Nanda, Rita ;
Tretiakova, Maria ;
Orrico, Alejandra Ruiz ;
Dreher, Donna ;
Palazzo, Juan P. ;
Perreard, Laurent ;
Nelson, Edward ;
Mone, Mary ;
Hansen, Heidi ;
Mullins, Michael ;
Quackenbush, John F. ;
Ellis, Matthew J. ;
Olopade, Olufunmilayo I. ;
Bernard, Philip S. ;
Perou, Charles M. .
BMC GENOMICS, 2006, 7 (1)
[26]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264
[27]   Clinically high-risk breast cancer displays markedly discordant molecular risk predictions between the MammaPrint and EndoPredict tests [J].
Jahn, Stephan Wenzel ;
Bosl, Andreas ;
Tsybrovskyy, Oleksiy ;
Gruber-Rossipal, Christine ;
Helfgott, Ruth ;
Fitzal, Florian ;
Knauer, Michael ;
Balic, Marija ;
Jasarevic, Zerina ;
Offner, Felix ;
Moinfar, Farid .
BRITISH JOURNAL OF CANCER, 2020, 122 (12) :1744-1746
[28]  
JASSAL B, 2019, NUCLEIC ACIDS RES
[29]   Adjusting batch effects in microarray expression data using empirical Bayes methods [J].
Johnson, W. Evan ;
Li, Cheng ;
Rabinovic, Ariel .
BIOSTATISTICS, 2007, 8 (01) :118-127
[30]   Immunotherapeutic benefit of α-interferon (IFNα) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients [J].
Kameshima, Hidekazu ;
Tsuruma, Tetsuhiro ;
Kutomi, Goro ;
Shima, Hiroaki ;
Iwayama, Yuji ;
Kimura, Yasutoshi ;
Imamura, Masahumi ;
Torigoe, Toshihiko ;
Takahashi, Akari ;
Hirohashi, Yoshihiko ;
Tamura, Yasuaki ;
Tsukahara, Tomohide ;
Kanaseki, Takayuki ;
Sato, Noriyuki ;
Hirata, Koichi .
CANCER SCIENCE, 2013, 104 (01) :124-129