Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer

被引:19
作者
Souri, E. Amiri [1 ]
Chenoweth, A. [2 ,3 ,4 ,5 ]
Cheung, A. [2 ,3 ,4 ,5 ]
Karagiannis, S. N. [2 ,3 ,4 ,5 ]
Tsoka, S. [1 ]
机构
[1] Kings Coll London, Fac Nat & Math Sci, Dept Informat, London, England
[2] Kings Coll London, Sch Basic & Med Biosci, St Johns Inst Dermatol, London, England
[3] Guys & St Thomas Hosp, NIHR Biomed Res Ctr, London, England
[4] Kings Coll London, London, England
[5] Kings Coll London, Guys Canc Ctr, Sch Canc & Pharmaceut Sci, Breast Canc Now Res Unit, London, England
关键词
R/BIOCONDUCTOR PACKAGE; INFORMATION; RECURRENCE; SIGNATURES; PREDICTOR; SUBTYPES; THERAPY;
D O I
10.1038/s41416-021-01455-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Prognostic stratification of breast cancers remains a challenge to improve clinical decision making. We employ machine learning on breast cancer transcriptomics from multiple studies to link the expression of specific genes to histological grade and classify tumours into a more or less aggressive prognostic type. Materials and methods Microarray data of 5031 untreated breast tumours spanning 33 published datasets and corresponding clinical data were integrated. A machine learning model based on gradient boosted trees was trained on histological grade-1 and grade-3 samples. The resulting predictive model (Cancer Grade Model, CGM) was applied on samples of grade-2 and unknown-grade (3029) for prognostic risk classification. Results A 70-gene signature for assessing clinical risk was identified and was shown to be 90% accurate when tested on known histological-grade samples. The predictive framework was validated through survival analysis and showed robust prognostic performance. CGM was cross-referenced with existing genomic tests and demonstrated the competitive predictive power of tumour risk. Conclusions CGM is able to classify tumours into better-defined prognostic categories without employing information on tumour size, stage, or subgroups. The model offers means to improve prognosis and support the clinical decision and precision treatments, thereby potentially contributing to preventing underdiagnosis of high-risk tumours and minimising over-treatment of low-risk disease.
引用
收藏
页码:748 / 758
页数:11
相关论文
共 64 条
[1]   Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial [J].
Albain, Kathy S. ;
Barlow, William E. ;
Shak, Steven ;
Hortobagyi, Gabriel N. ;
Livingston, Robert B. ;
Yeh, I-Tien ;
Ravdin, Peter ;
Bugarini, Roberto ;
Boehner, Frederick L. ;
Davidson, Nancy E. ;
Sledge, George W. ;
Winer, Eric P. ;
Hudis, Clifford ;
Ingle, James N. ;
Perez, Edith A. ;
Pritchard, Kathleen I. ;
Shepherd, Lois ;
Gralow, Julie R. ;
Yoshizawa, Carl ;
Allred, D. Craig ;
Osborne, C. Kent ;
Hayes, Daniel F. .
LANCET ONCOLOGY, 2010, 11 (01) :55-65
[2]   Genomic Grade Index predicts postoperative clinical outcome of GIST [J].
Bertucci, F. ;
Finetti, P. ;
Ostrowski, J. ;
Kim, W. K. ;
Kim, H. ;
Pantaleo, M. A. ;
Astolfi, A. ;
Polkowski, M. ;
Birnbaum, D. .
BRITISH JOURNAL OF CANCER, 2012, 107 (08) :1433-1441
[3]   GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes [J].
Boyle, EI ;
Weng, SA ;
Gollub, J ;
Jin, H ;
Botstein, D ;
Cherry, JM ;
Sherlock, G .
BIOINFORMATICS, 2004, 20 (18) :3710-3715
[4]   Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Cardoso, F. ;
Kyriakides, S. ;
Ohno, S. ;
Penault-Llorca, F. ;
Poortmans, P. ;
Rubio, I. T. ;
Zackrisson, S. ;
Senkus, E. .
ANNALS OF ONCOLOGY, 2019, 30 (08) :1194-1220
[5]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[6]   Targeting TPX2 suppresses proliferation and promotes apoptosis via repression of the PI3k/AKT/P21 signaling pathway and activation of p53 pathway in breast cancer [J].
Chen, Miaomiao ;
Zhang, Hongqin ;
Zhang, Guihong ;
Zhong, Ailing ;
Ma, Qian ;
Kai, Jinyan ;
Tong, Yin ;
Xie, Suhong ;
Wang, Yanchun ;
Zheng, Hui ;
Guo, Lin ;
Lu, Renquan .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 507 (1-4) :74-82
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]  
CHENG S, 2019, INT J ONCOL
[9]   Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer [J].
Clemens, Michael R. ;
Gladkov, Oleg A. ;
Gartner, Elaina ;
Vladimirov, Vladimir ;
Crown, John ;
Steinberg, Joyce ;
Jie, Fei ;
Keating, Anne .
BREAST CANCER RESEARCH AND TREATMENT, 2015, 149 (01) :171-179
[10]   Histological grade concordance between diagnostic core biopsy and corresponding surgical specimen in HR-positive/HER2-negative breast carcinoma [J].
Daveau, C. ;
Baulies, S. ;
Lalloum, M. ;
Bollet, M. ;
Sigal-Zafrani, B. ;
Sastre, X. ;
Vincent-Salomon, A. ;
Tardivon, A. ;
Thibault, F. ;
Pierga, J. Y. ;
Cottu, P. ;
Sablin, M. P. ;
Rouzier, R. ;
Malhaire, C. ;
Mallon, P. ;
Reyal, F. .
BRITISH JOURNAL OF CANCER, 2014, 110 (09) :2195-2200