SOME FIELD THEORETIC PROPERTIES AND AN APPLICATION CONCERNING TRANSCENDENTAL NUMBERS

被引:4
作者
Jensen, Christian U. [1 ]
Marques, Diego [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Brasilia, Dept Matemat, Brasilia, DF, Brazil
关键词
Artin-Schreier; Galois theory; Gelfond-Schneider; transcendental numbers;
D O I
10.1142/S0219498810004038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a proper subfield K of Q we show the existence of an algebraic number alpha such that no power alpha(n), n >= 1, lies in K. As an application it is shown that these numbers, multiplied by convenient Gaussian numbers, can be written in the form P(T)(Q(T)) for some transcendental numbers T where P and Q are arbitrarily prescribed nonconstant rational functions over (Q) over bar.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 1882, Math. Ann., DOI [DOI 10.1007/BF014465221,9,16, 10.1007/BF01446522]
[2]  
Fuchs L., 1970, INFINITE ABELIAN GRO, V1
[3]  
Geyer W.-D., 1969, J. Number Theory, V1, P346
[4]  
Jacobson N., 1989, BASIC ALGEBRA
[5]  
Lang S., 1966, Introduction to Transcendental Numbers
[6]  
MARCUS DANIEL A, 1977, NUMBER FIELDS
[7]  
MARQUES D, 2009, SCHANUELS CONJ UNPUB
[8]  
MARQUES D, 2009, THESIS U BRASILIA
[9]  
Schneider T., 1934, J. reine angew. Math, V172, P65
[10]  
SONDOW J, 2010, ANN MATH IN IN PRESS