Scattering and Perturbation Theory for Discrete-Time Dynamics

被引:5
作者
Bisio, Alessandro [1 ]
Mosco, Nicola [1 ]
Perinotti, Paolo [1 ]
机构
[1] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
关键词
QUANTUM CELLULAR-AUTOMATON; LATTICE; EQUATION; DIRAC; WALKS; FIELD; ALGORITHMS; SIMULATION; MODELS; GORDON;
D O I
10.1103/PhysRevLett.126.250503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a systematic treatment of scattering processes for quantum systems whose time evolution is discrete. We define and show some general properties of the scattering operator, in particular the conservation of quasienergy which is defined only modulo 2 pi. Then we develop two perturbative techniques for the power series expansion of the scattering operator, the first one analogous to the iterative solution of the Lippmann-Schwinger equation, the second one to the Dyson series of perturbative quantum field theory. We use this formalism to compare the scattering amplitudes of a continuous-time model and of the corresponding discretized one. We give a rigorous assessment of the comparison for the case of bounded free Hamiltonian, as in a lattice theory with a bounded number of particles. Our framework can be applied to a wide class of quantum simulators, like quantum walks and quantum cellular automata. As a case study, we analyze the scattering properties of a one-dimensional cellular automaton with locally interacting fermions.
引用
收藏
页数:7
相关论文
共 55 条
[1]  
[Anonymous], ARXIVQUANTPH0405174
[2]   Quantum walks and discrete gauge theories [J].
Arnault, Pablo ;
Debbasch, Fabrice .
PHYSICAL REVIEW A, 2016, 93 (05)
[3]   An overview of quantum cellular automata [J].
Arrighi, P. .
NATURAL COMPUTING, 2019, 18 (04) :885-899
[4]   A quantum cellular automaton for one-dimensional QED [J].
Arrighi, Pablo ;
Beny, Cedric ;
Farrelly, Terry .
QUANTUM INFORMATION PROCESSING, 2020, 19 (03)
[5]   Decoupled quantum walks, models of the Klein-Gordon and wave equations [J].
Arrighi, Pablo ;
Facchini, Stefano .
EPL, 2013, 104 (06)
[6]   Unitarity plus causality implies localizability [J].
Arrighi, Pablo ;
Nesme, Vincent ;
Werner, Reinhard .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (02) :372-378
[7]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[8]   Optimal simulation of two-qubit Hamiltonians using general local operations [J].
Bennett, CH ;
Cirac, JI ;
Leifer, MS ;
Leung, DW ;
Linden, N ;
Popescu, S ;
Vidal, G .
PHYSICAL REVIEW A, 2002, 66 (01) :123051-1230516
[9]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[10]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)