Inferring recombination patterns in African populations

被引:5
作者
van Eeden, Gerald [1 ]
Uren, Caitlin [1 ,2 ]
Moller, Marlo [1 ,2 ]
Henn, Brenna M. [3 ,4 ]
机构
[1] Stellenbosch Univ, Fac Med & Hlth Sci, DSI NRF Ctr Excellence Biomed TB Res, South African Med Res Council Ctr TB Res,Div Mol, ZA-7505 Cape Town, South Africa
[2] Stellenbosch Univ, Ctr Bioinformat & Computat Biol, ZA-7602 Stellenbosch, South Africa
[3] Univ Calif Davis, Ctr Populat Biol, Dept Anthropol, Davis, CA 95616 USA
[4] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
基金
新加坡国家研究基金会; 美国国家卫生研究院; 英国医学研究理事会;
关键词
HUMAN MEIOTIC RECOMBINATION; DEMOGRAPHIC HISTORY; RATES; HOTSPOTS; CROSSOVERS; LANDSCAPE; IDENTITY; DISEASE; MAPS;
D O I
10.1093/hmg/ddab020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains relatively understudied. Given that there is high genetic divergence among groups in Africa, it is possible that recombination hotspots also diverge significantly. Both limitations and opportunities exist for developing recombination maps for these populations. In this review, we discuss various recombination inference methods, and the strengths and weaknesses of these methods in analyzing recombination in African-descent populations. Furthermore, we provide a decision tree and recommendations for which inference method to use in various research contexts. Establishing an appropriate methodology for recombination rate inference in a particular study will improve the accuracy of various downstream analyses including but not limited to local ancestry inference, haplotype phasing, fine-mapping of GWAS loci and genome assemblies.
引用
收藏
页码:R11 / R16
页数:6
相关论文
共 51 条
[41]   Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data [J].
Rastas, Pasi .
BIOINFORMATICS, 2017, 33 (23) :3726-3732
[42]   A comparison of three estimators of the population-scaled recombination rate: Accuracy and robustness [J].
Smith, NGC ;
Fearnhead, P .
GENETICS, 2005, 171 (04) :2051-2062
[43]   Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations [J].
Spence, Jeffrey P. ;
Song, Yun S. .
SCIENCE ADVANCES, 2019, 5 (10)
[44]   Variation in recombination frequency and distribution across eukaryotes: patterns and processes [J].
Stapley, Jessica ;
Feulner, Philine G. D. ;
Johnston, Susan E. ;
Santure, Anna W. ;
Smadja, Carole M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 372 (1736)
[45]   Estimating recombination rates from population-genetic data [J].
Stumpf, MPH ;
McVean, GAT .
NATURE REVIEWS GENETICS, 2003, 4 (12) :959-968
[46]   A hidden Markov model approach to multilocus linkage analysis in a full-sib family [J].
Tong, Chunfa ;
Zhang, Bo ;
Shi, Jisen .
TREE GENETICS & GENOMES, 2010, 6 (05) :651-662
[47]   Putting RFMix and ADMIXTURE to the test in a complex admixed population [J].
Uren, Caitlin ;
Hoal, Eileen G. ;
Moller, Marlo .
BMC GENETICS, 2020, 21 (01)
[48]   Population structure and infectious disease risk in southern Africa [J].
Uren, Caitlin ;
Moller, Marlo ;
van Helden, Paul D. ;
Henn, Brenna M. ;
Hoal, Eileen G. .
MOLECULAR GENETICS AND GENOMICS, 2017, 292 (03) :499-509
[49]   The kinetochore prevents centromere-proximal crossover recombination during meiosis [J].
Vincenten, Nadine ;
Kuhl, Lisa-Marie ;
Lam, Isabel ;
Oke, Ashwini ;
Kerr, Alastair R. W. ;
Hochwagen, Andreas ;
Fung, Jennifer ;
Keeney, Scott ;
Vader, Gerben ;
Marston, Adele L. .
ELIFE, 2015, 4
[50]   Recombination rates in admixed individuals identified by ancestry-based inference [J].
Wegmann, Daniel ;
Kessner, Darren E. ;
Veeramah, Krishna R. ;
Mathias, Rasika A. ;
Nicolae, Dan L. ;
Yanek, Lisa R. ;
Sun, Yan V. ;
Torgerson, Dara G. ;
Rafaels, Nicholas ;
Mosley, Thomas ;
Becker, Lewis C. ;
Ruczinski, Ingo ;
Beaty, Terri H. ;
Kardia, Sharon L. R. ;
Meyers, Deborah A. ;
Barnes, Kathleen C. ;
Becker, Diane M. ;
Freimer, Nelson B. ;
Novembre, John .
NATURE GENETICS, 2011, 43 (09) :847-U53