Adsorption kinetics of phosphate and arsenate on goethite. A comparative study

被引:109
作者
Luengo, Carina [1 ]
Brigante, Maximiliano
Avena, Marcelo
机构
[1] Univ Nacl Sur, Dept Quim, RA-8000 Bahia Blanca, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
adsorption; kinetics; phosphorus; arsenic; metal oxides; COMPETITIVE ADSORPTION; ALPHA-FEOOH; SURFACE; SORPTION; DESORPTION; CHARGE; PH;
D O I
10.1016/j.jcis.2007.03.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption kinetics of phosphate and arsenate on goethite is studied and compared. Batch adsorption experiments were performed at different adsorbate concentrations, pH, temperatures and stirring rates. For both oxoanions the adsorption rate increases by increasing adsorbate concentration, decreasing pH and increasing temperature. It does not change by changing stirring rate. The adsorption takes place in two processes: a fast one that takes place in less than 5 min and a slow one that takes place in several hours or more. The rate of the slow process does not depend directly on the concentration of phosphate or arsenate in solution, but depends linearly on the amount of phosphate or arsenate that was adsorbed during the fast process. Apparent activation energies and absence of stirring rate effects suggest that the slow process is controlled by diffusion into pores, although the evidence is not conclusive. The similarities in the adsorption kinetics of phosphate and arsenate are quantitatively shown by using a three-parameters equation that takes into account both the fast and the slow processes. These similarities are in line with the similar reactivity that phosphate and arsenate have in general and may be important for theoretical and experimental studies of the fate of these oxoanions in the environment. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:354 / 360
页数:7
相关论文
共 30 条
[1]   INFLUENCE OF AGGREGATION ON THE UPTAKE KINETICS OF PHOSPHATE BY GOETHITE [J].
ANDERSON, MA ;
TEJEDORTEJEDOR, MI ;
STANFORTH, RR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1985, 19 (07) :632-637
[2]  
[Anonymous], 1991, CONTROL EUTROPHICATI
[3]   Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface [J].
Antelo, J ;
Avena, M ;
Fiol, S ;
López, R ;
Arce, F .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 285 (02) :476-486
[4]  
ANTELO J, 2004, THESIS U SANTIAGO CO
[5]   ADSORPTION OF POTENTIAL-DETERMINING IONS AT FERRIC OXIDE-AQUEOUS ELECTROLYTE INTERFACE [J].
ATKINSON, RJ ;
POSNER, AM ;
QUIRK, JP .
JOURNAL OF PHYSICAL CHEMISTRY, 1967, 71 (03) :550-&
[6]   DESCRIBING THE EFFECT OF TIME ON SORPTION OF PHOSPHATE BY IRON AND ALUMINUM HYDROXIDES [J].
BOLAN, NS ;
BARROW, NJ ;
POSNER, AM .
JOURNAL OF SOIL SCIENCE, 1985, 36 (02) :187-197
[7]   Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles:: An experimental and modeling study [J].
Gaboriaud, F ;
Ehrhardt, J .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (05) :967-983
[8]   Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution [J].
Gao, Y ;
Mucci, A .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (14) :2361-2378
[9]   Arsenate and chromate retention mechanisms on goethite .2. Kinetic evaluation using a pressure-jump relaxation technique [J].
Grossl, PR ;
Eick, M ;
Sparks, DL ;
Goldberg, S ;
Ainsworth, CC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (02) :321-326
[10]   Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides [J].
Hiemstra, T ;
Van Riemsdijk, WH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 210 (01) :182-193