Estimation of the l2-norm and testing in sparse linear regression with unknown variance

被引:4
|
作者
Carpentier, Alexandra [1 ]
Collier, Olivier [2 ,3 ]
Comminges, Laetitia [3 ,4 ]
Tsybakov, Alexandre B. [5 ,6 ]
Wang, Yuhao [7 ,8 ]
机构
[1] Univ Potsdam, Inst Math, Potsdam, Germany
[2] Univ Paris Nanterre, ModalX, Paris, France
[3] CREST, Paris, France
[4] Univ Paris 09, CEREMADE, Paris, France
[5] ENSAE, CREST, Paris, France
[6] Inst Polytech Paris, Paris, France
[7] Tsinghua Univ, Beijing, Peoples R China
[8] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
关键词
Sparse linear regression; signal detection; non-linear functional estimation; ADAPTIVE ESTIMATION; FUNCTIONALS; BOUNDS; LASSO;
D O I
10.3150/21-BEJ1436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the related problems of estimating the l(2)-norm and the squared l(2)-norm in sparse linear regression with unknown variance, as well as the problem of testing the hypothesis that the regression parameter is null under sparse alternatives with l(2) separation. We establish the minimax optimal rates of estimation (respectively, testing) in these three problems.
引用
收藏
页码:2744 / 2787
页数:44
相关论文
共 50 条
  • [1] Sparse l2-norm Regularized Regression for Face Recognition
    Qudaimat, Ahmad J.
    Demirel, Hasan
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 453 - 458
  • [2] Sparse Representation Classification Based Linear Integration of l1-norm and l2-norm for Robust Face Recognition
    Awedat, Khalfalla
    Essa, Almabrok
    Asari, Vijayan
    2017 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2017, : 447 - 451
  • [3] L1-norm plus L2-norm sparse parameter for image recognition
    Feng, Qingxiang
    Zhu, Qi
    Tang, Lin-Lin
    Pan, Jeng-Shyang
    OPTIK, 2015, 126 (23): : 4078 - 4082
  • [4] METHOD OF AVERAGES AS AN ALTERNATIVE TO L1-NORM AND L2-NORM METHODS IN SPECIAL LINEAR-REGRESSION PROBLEMS
    KVETON, K
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 407 - 414
  • [5] Combining L1-norm and L2-norm based sparse representations for face recognition
    Zhu, Qi
    Zhang, Daoqiang
    Sun, Han
    Li, Zhengming
    OPTIK, 2015, 126 (7-8): : 719 - 724
  • [6] Local estimation of the error in the von Mises' stress and L2-norm of the stress for linear elasticity problems
    Gallimard, L.
    ENGINEERING COMPUTATIONS, 2006, 23 (7-8) : 876 - 897
  • [7] A PROPERTY OF L2-NORM OF A CONVOLUTION
    ANDERSON, DR
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (04) : 693 - &
  • [8] Regression and classification using extreme learning machine based on L1-norm and L2-norm
    Luo, Xiong
    Chang, Xiaohui
    Ban, Xiaojuan
    NEUROCOMPUTING, 2016, 174 : 179 - 186
  • [9] On the L2-norm of periodizations of functions
    Kovrijkine, O
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (19) : 1003 - 1025
  • [10] ESTIMATION OF L2-NORM OF A FUNCTION OVER A BOUNDED SUBSET OF RN
    WALKER, HF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 38 (01) : 103 - 110