Variational inference based bayes online classifiers with concept drift adaptation

被引:22
作者
Thi Thu Thuy Nguyen [1 ]
Tien Thanh Nguyen [1 ,2 ]
Liew, Alan Wee-Chung [1 ]
Wang, Shi-Lin [3 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Gold Coast Campus, Southport, Qld 4222, Australia
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[3] Shanghai Jiao Tong Univ, Sch Informat Secur Engn, Shanghai, Peoples R China
关键词
Online learning; Variational inference; Bayesian classifier; Data stream; Concept drift; PERCEPTRON;
D O I
10.1016/j.patcog.2018.04.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present VIGO, a novel online Bayesian classifier for both binary and multiclass problems. In our model, variational inference for multivariate distribution technique is exploited to approximate the class conditional probability density functions of data in an online manner. To handle concept drift that could arise in streaming data, we develop 2 new adaptive methods based on VIGO, which we called VIGOw and VIGOd. While VIGOw naturally adapts to any kind of changing environments, VIGOd maximises the benefit of a static environment as long as it does not detect any change. Extensive experiments on big/medium real-world/synthetic datasets demonstrate the superior performance of our algorithms over many state-of-the-art methods in the literature. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:280 / 293
页数:14
相关论文
共 43 条
  • [1] [Anonymous], 2000, ICML, DOI DOI 10.1007/978-3-540-44871-6_130
  • [2] [Anonymous], 2012, LEARNING NONSTATIONA
  • [3] Bai Q., 2014, ICML
  • [4] Bifet A., 2009, IDA
  • [5] Bifet A., 2013, SAC
  • [6] Bifet A, 2010, J MACH LEARN RES, V11, P1601
  • [7] Bifet Albert, 2007, SIAM INT C DATA MINI
  • [8] Bishop C.M., 2006, PATTERN RECOGN, V4, P738, DOI DOI 10.1117/1.2819119
  • [9] Broderick T., 2013, NIPS
  • [10] Second-order perceptron algorithm
    Cesa-Bianchi, N
    Conconi, A
    Gentile, C
    [J]. SIAM JOURNAL ON COMPUTING, 2005, 34 (03) : 640 - 668