Beta function quintessence cosmological parameters and fundamental constants - I. Power and inverse power law dark energy potentials

被引:6
作者
Thompson, Rodger I. [1 ]
机构
[1] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
关键词
cosmological parameters; theory; dark energy; early Universe; MASS-RATIO; CONSTRAINTS; ELECTRON;
D O I
10.1093/mnras/sty927
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar phi with respect to the natural log of the scale factor alpha, beta(phi) = d phi/d ln(a) Once the beta function is specified, modulo a boundary condition, the evolution of the scalar phi as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated 'beta potential' is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are not calculable using only the model action. As an example, this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that A cold dark matter is part of the family of quintessence cosmology power-law potentials with a power of zero.
引用
收藏
页码:4104 / 4115
页数:12
相关论文
共 19 条
[1]   Reconstructing the dark energy equation of state with varying couplings [J].
Avelino, P. P. ;
Martins, C. J. A. P. ;
Nunes, N. J. ;
Olive, K. A. .
PHYSICAL REVIEW D, 2006, 74 (08)
[2]  
Avsajanishvili O., 2017, ARXIV171111465V1
[3]   Growth rate in the dynamical dark energy models [J].
Avsajanishvili, Olga ;
Arkhipova, Natalia A. ;
Samushia, Lado ;
Kahniashvili, Tina .
EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (11) :1-8
[4]   Robust Constraint on a Drifting Proton-to-Electron Mass Ratio at z=0: 89 from Methanol Observation at Three Radio Telescopes [J].
Bagdonaite, J. ;
Dapra, M. ;
Jansen, P. ;
Bethlem, H. L. ;
Ubachs, W. ;
Muller, S. ;
Henkel, C. ;
Menten, K. M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (23)
[5]   Universality classes for models of inflation [J].
Binetruy, P. ;
Kiritsis, E. ;
Mabillard, J. ;
Pieroni, M. ;
Rosset, C. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (04)
[6]   Constraining variations in the fine structure constant in the presence of early dark energy [J].
Calabrese, Erminia ;
Menegoni, Eloisa ;
Martins, C. J. A. P. ;
Melchiorri, Alessandro ;
Rocha, Graca .
PHYSICAL REVIEW D, 2011, 84 (02)
[7]   Quintessence and the rest of the world: Suppressing long-range interactions [J].
Carroll, SM .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3067-3070
[8]   Universality for quintessence [J].
Cicciarella, F. ;
Pieroni, M. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (08)
[9]   Coupled variations of fundamental couplings and primordial nucleosynthesis [J].
Coc, Alain ;
Nunes, Nelson J. ;
Olive, Keith A. ;
Uzan, Jean-Philippe ;
Vangioni, Elisabeth .
PHYSICAL REVIEW D, 2007, 76 (02)
[10]   Updated observational constraints on quintessence dark energy models [J].
Durrive, Jean-Baptiste ;
Ooba, Junpei ;
Ichiki, Kiyotomo ;
Sugiyama, Naoshi .
PHYSICAL REVIEW D, 2018, 97 (04)