Classification of Paediatric Inflammatory Bowel Disease using Machine Learning

被引:106
|
作者
Mossotto, E. [1 ,2 ]
Ashton, J. J. [1 ,3 ]
Coelho, T. [1 ,3 ]
Beattie, R. M. [3 ]
MacArthur, B. D. [2 ]
Ennis, S. [1 ]
机构
[1] Univ Southampton, Human Genet & Genom Med, Southampton, Hants, England
[2] Univ Southampton, Inst Life Sci, Southampton, Hants, England
[3] Southampton Childrens Hosp, Dept Pediat Gastroenterol, Southampton, Hants, England
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
ULCERATIVE-COLITIS; RISING INCIDENCE; CROHNS-DISEASE; PREDICTION; DIAGNOSIS; EXTENT;
D O I
10.1038/s41598-017-02606-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Paediatric inflammatory bowel disease (PIBD), comprising Crohn's disease (CD), ulcerative colitis (UC) and inflammatory bowel disease unclassified (IBDU) is a complex and multifactorial condition with increasing incidence. An accurate diagnosis of PIBD is necessary for a prompt and effective treatment. This study utilises machine learning (ML) to classify disease using endoscopic and histological data for 287 children diagnosed with PIBD. Data were used to develop, train, test and validate a ML model to classify disease subtype. Unsupervised models revealed overlap of CD/UC with broad clustering but no clear subtype delineation, whereas hierarchical clustering identified four novel subgroups characterised by differing colonic involvement. Three supervised ML models were developed utilising endoscopic data only, histological only and combined endoscopic/histological data yielding classification accuracy of 71.0%, 76.9% and 82.7% respectively. The optimal combined model was tested on a statistically independent cohort of 48 PIBD patients from the same clinic, accurately classifying 83.3% of patients. This study employs mathematical modelling of endoscopic and histological data to aid diagnostic accuracy. While unsupervised modelling categorises patients into four subgroups, supervised approaches confirm the need of both endoscopic and histological evidence for an accurate diagnosis. Overall, this paper provides a blueprint for ML use with clinical data.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Immunological Profiling of Paediatric Inflammatory Bowel Disease Using Unsupervised Machine Learning
    Coelho, Tracy
    Mossotto, Enrico
    Gao, Yifang
    Haggarty, Rachel
    Ashton, James J.
    Batra, Akshay
    Stafford, Imogen S.
    Beattie, Robert M.
    Williams, Anthony P.
    Ennis, Sarah
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2020, 70 (06): : 833 - 840
  • [2] Machine Learning in Antibody Diagnostics for Inflammatory Bowel Disease Subtype Classification
    Sokollik, Christiane
    de Mortanges, Aurelie Pahud
    Leichtle, Alexander B. B.
    Juillerat, Pascal
    Horn, Michael P. P.
    DIAGNOSTICS, 2023, 13 (15)
  • [3] Paediatric bowel ultrasound in inflammatory bowel disease
    Elliott, Claire L.
    Maclachlan, Jody
    Beal, Isobel
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 108 : 21 - 27
  • [4] Accurate Classification of Pediatric Colonic Inflammatory Bowel Disease Subtype Using a Random Forest Machine Learning Classifier
    Dhaliwal, Jasbir
    Erdman, Lauren
    Drysdale, Erik
    Rinawi, Firas
    Muir, Jennifer
    Walters, Thomas D.
    Siddiqui, Iram
    Griffiths, Anne M.
    Church, Peter C.
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2021, 72 (02): : 262 - 269
  • [5] Inflammatory bowel disease in paediatric rheumatological diseases
    Tas, Ozen
    Aydin, Fatma
    Kuloglu, Zarife
    Kirsaclioglu, Ceyda Tuna
    Bahceci, Onur
    Aydin, Betul oksuz
    Sarisoy, Dogacan
    Ozcakar, Zeynep Birsin
    CLINICAL RHEUMATOLOGY, 2025,
  • [6] Predicting Hospitalization and Outpatient Corticosteroid Use in Inflammatory Bowel Disease Patients Using Machine Learning
    Waljee, Akbar K.
    Lipson, Rachel
    Wiitala, Wyndy L.
    Zhang, Yiwei
    Liu, Boang
    Zhu, Ji
    Wallace, Beth
    Govani, Shail M.
    Stidham, Ryan W.
    Hayward, Rodney
    Higgins, Peter D. R.
    INFLAMMATORY BOWEL DISEASES, 2018, 24 (01) : 45 - 53
  • [7] CANCER PREDICTION IN INFLAMMATORY BOWEL DISEASE PATIENTS BY USING MACHINE LEARNING ALGORITHMS
    Moayedi, Fatemeh
    Karimi, Javad
    Dashti, Seyed Ebrahim
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2023, 35 (03):
  • [8] Biosimilars in paediatric inflammatory bowel disease
    Sieczkowska-Golub, Joanna
    Jarzebicka, Dorota
    Oracz, Grzegorz
    Kierkus, Jaroslaw
    WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24 (35) : 4021 - 4027
  • [9] Infliximab in paediatric inflammatory bowel disease
    Vilar, Pere
    Martin de Carpi, Javier
    Acuna, Claudia E.
    Luisa Masiques, Ma
    JOURNAL OF CROHNS & COLITIS, 2007, 1 (01): : 2 - 9
  • [10] Paediatric magnetic resonance enterography in inflammatory bowel disease
    Greer, Mary-Louise C.
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 102 : 129 - 137