Median unbiased estimation of coefficient variance in a time-varying parameter model

被引:169
|
作者
Stock, JH [1 ]
Watson, MW
机构
[1] Harvard Univ, John F Kennedy Sch Govt, Cambridge, MA 02138 USA
[2] Princeton Univ, Woodrow Wilson Sch, Princeton, NJ 08544 USA
关键词
stochastic coefficient model; structural time series model; unit moving average root; unobserved components;
D O I
10.2307/2669631
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers inference about the variance of coefficients in time-varying parameter models with stationary regressors. The Gaussian maximum likelihood estimator (MLE) has a large point mass at 0. We thus develop asymptotically median unbiased estimators and asymptotically valid confidence intervals by inverting quantile functions of regression-based parameter stability test statistics, computed under the constant-parameter null. These estimators have good asymptotic relative efficiencies for small to moderate amounts of parameter variability. We apply these results to an unobserved components model of trend growth in postwar U.S. per capita gross domestic product. The MLE implies that there has been no change in the trend growth rate, whereas the upper range of the median-unbiased point estimates imply that the annual trend growth rate has fallen by 0.9% per annum since the 1950s.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 50 条
  • [1] Parameter Estimation of Time-Varying ARMA Model
    王文华
    韩力
    王文星
    Journal of Beijing Institute of Technology(English Edition), 2004, (02) : 131 - 134
  • [2] Time-Varying Wind Load Identification Based on Minimum-Variance Unbiased Estimation
    Xue, Huili
    Lin, Kun
    Luo, Yin
    Liu, Hongjun
    SHOCK AND VIBRATION, 2017, 2017
  • [3] Research on parameter estimation of time-varying AR model
    Wang, WH
    Wang, WX
    PIMRC 2003: 14TH IEEE 2003 INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS PROCEEDINGS, VOLS 1-3 2003, 2003, : 2378 - 2382
  • [4] A combined estimation functions method for autoregressive model with time-varying variance
    Han Y.
    Tian B.
    Wang S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (05): : 756 - 761
  • [5] Time-Varying Coefficient Model Component Estimation Through Generalized Estimation Equations
    Camilo Sosa, Juan
    Guillermo Diaz, Luis
    REVISTA COLOMBIANA DE ESTADISTICA, 2010, 33 (01): : 89 - 109
  • [6] Wavelet estimation in time-varying coefficient models
    Xingcai Zhou
    Beibei Ni
    Chunhua Zhu
    Lithuanian Mathematical Journal, 2019, 59 : 276 - 293
  • [7] Wavelet estimation in time-varying coefficient models
    Zhou, Xingcai
    Ni, Beibei
    Zhu, Chunhua
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (02) : 276 - 293
  • [8] Time-varying coefficient model estimation through radial basis functions
    Sosa, Juan
    Buitrago, Lina
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (10) : 2510 - 2534
  • [9] JOINT STRUCTURE SELECTION AND ESTIMATION IN THE TIME-VARYING COEFFICIENT COX MODEL
    Xiao, Wei
    Lu, Wenbin
    Zhang, Hao Helen
    STATISTICA SINICA, 2016, 26 (02) : 547 - 567
  • [10] Time-varying coefficient estimation in differential equation models with noisy time-varying covariates
    Hong, Zhaoping
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 103 (01) : 58 - 67