Precision test of statistical dynamics with state-to-state ultracold chemistry

被引:78
作者
Liu, Yu [1 ,2 ,3 ,6 ]
Hu, Ming-Guang [1 ,2 ,3 ]
Nichols, Matthew A. [1 ,2 ,3 ]
Yang, Dongzheng [4 ]
Xie, Daiqian [4 ]
Guo, Hua [5 ]
Ni, Kang-Kuen [1 ,2 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Harvard MIT Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[4] Nanjing Univ, Sch Chem & Chem Engn, Inst Theoret & Computat Chem, Nanjing, Peoples R China
[5] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
[6] NIST, Time & Frequency Div, Boulder, CO 80305 USA
基金
中国国家自然科学基金;
关键词
HIGH-RESOLUTION SPECTROSCOPY; LOG-DERIVATIVE METHOD; ELECTRONIC-STATE; ION; COLLISIONS; MOLECULES; RB-2; RB2;
D O I
10.1038/s41586-021-03459-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemical reactions represent a class of quantum problems that challenge both the current theoretical understanding and computational capabilities(1). Reactions that occur at ultralow temperatures provide an ideal testing ground for quantum chemistry and scattering theories, because they can be experimentally studied with unprecedented control(2), yet display dynamics that are highly complex(3). Here we report the full product state distribution for the reaction 2KRb -> K-2 + Rb-2. Ultracold preparation of the reactants allows us complete control over their initial quantum degrees of freedom, whereas state-resolved, coincident detection of both products enables the probability of scattering into each of the 57 allowed rotational state-pairs to be measured. Our results show an overall agreement with a state-counting model based on statistical theory(4-6), but also reveal several deviating state-pairs. In particular, we observe a strong suppression of population in the state-pair closest to the exoergicity limit as a result of the long-range potential inhibiting the escape of products. The completeness of our measurements provides a benchmark for quantum dynamics calculations beyond the current state of the art.
引用
收藏
页码:379 / +
页数:19
相关论文
共 59 条
[1]   Hyperfine energy levels of alkali-metal dimers: Ground-state homonuclear molecules in magnetic fields [J].
Aldegunde, J. ;
Hutson, Jeremy M. .
PHYSICAL REVIEW A, 2009, 79 (01)
[2]   THE LONG-RANGE POTENTIAL OF THE K-2 X(1)SIGMA(+)(G) GROUND ELECTRONIC-STATE UP TO 15 ANGSTROM [J].
AMIOT, C ;
VERGES, J ;
FELLOWS, CE .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (09) :3350-3356
[3]   LASER-INDUCED FLUORESCENCE OF RB2 - THE (1)1-SIGMA-G+(X), (2)1-SIGMA-G+, (1)1-PI-U(B), (1)1-PI-G, AND (2)1-PI-U(C) ELECTRONIC STATES [J].
AMIOT, C .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (12) :8591-8604
[4]   Optical-optical double resonance and Fourier transform spectroscopy: the Rb-2 B-1 Pi(u) electronic state up to the quasibound energy levels [J].
Amiot, C ;
Verges, J .
CHEMICAL PHYSICS LETTERS, 1997, 274 (1-3) :91-98
[5]  
[Anonymous], 1976, Dynamics of Molecular Collisions
[6]   Perspective: Ultracold molecules and the dawn of cold controlled chemistry [J].
Balakrishnan, N. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (15)
[7]   Experimental and theoretical differential cross sections for the N(2D)+H2 reaction [J].
Balucani, N ;
Casavecchia, P ;
Bañares, L ;
Aoiz, FJ ;
Gonzalez-Lezana, T ;
Honvault, P ;
Launay, JM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (02) :817-829
[8]   Some key factors of energy distributions in the products of complex-forming elementary reactions [J].
Bonnet, L ;
Rayez, JC .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (10) :2383-2400
[9]   Product state resolved dynamics of elementary reactions [J].
Brouard, M ;
O'Keeffe, P ;
Vallance, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (15) :3629-3641
[10]   Identical collision partners in the coherent control of bimolecular reactions [J].
Brumer, P ;
Bergmann, K ;
Shapiro, M .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (06) :2053-2055