共 22 条
On reducing false alarms in multivariate statistical process control
被引:31
作者:
Chen, Tao
[1
]
机构:
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
关键词:
Bernoulli distribution;
Binomial distribution;
False alarm;
Multivariate statistical process control;
Principal component analysis;
D O I:
10.1016/j.cherd.2009.09.003
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
The primary objective of this note is to reduce the false alarms in multivariate statistical process control (MSPC). The issue of false alarms is inherent within MSPC as a result of the definition of control limits. It has been observed that under normal operating conditions, the occurrence of "out-of-control" data, i.e. false alarms, conforms to a Bernoulli distribution. Therefore, this issue can be formally addressed by developing a Binomial distribution for the number of "out-of-control" data points within a given time window, and a second-level control limit can be established to reduce the false alarms. This statistical approach is further extended to consider the combination of multiple control charts. The proposed methodology is demonstrated through its application to the monitoring of a benchmark simulated chemical process, and it is observed to effectively reduce the false alarms whilst retaining the capability of detecting process faults. (C) 2009 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:430 / 436
页数:7
相关论文