Epithelial to mesenchymal transition in Madin-Darby canine kidney cells is accompanied by down-regulation of Smad3 expression, leading to resistance to transforming growth factor-β-induced growth arrest

被引:67
作者
Nicolás, FJ
Lehmann, K
Warne, PH
Hill, CS
Downward, J
机构
[1] Canc Res UK London Res Inst, Signal Transduct Lab, London WC2A 3PX, England
[2] Canc Res UK London Res Inst, Dev Signalling Lab, London WC2A 3PX, England
关键词
D O I
10.1074/jbc.M209019200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In normal epithelial cells, transforming growth factor-beta (TGF-beta) typically causes growth arrest in the G(1) phase of the cell cycle and may eventually lead to apoptosis. However, transformed cells lose these inhibitory responses and often instead show an increase in malignant character following TGF-beta treatment. In the canine kidney-derived epithelial cell line, MDCK, synergism between activation of the RaVNLAPK pathway and the resulting autocrine production of TGF-beta triggers transition from an epithelial to a mesenchymal phenotype. During this process, these cells become refractive to TGF-beta-induced cell cycle arrest and apoptosis. TGF-beta signals are primarily transduced to the nucleus through complexes of receptor-regulated Smads, Smad2 and Smad3 with the common mediator Smad, Smad4. Here we show that the transition from an epithelial to mesenchymal phenotype is accompanied by gradual down-regulation of expression of Smad3. Restoration of Smad3 to previous levels of expression restores the cell cycle arrest induced by TGF-beta without reverting the cells to an epithelial phenotype or impacting on the MAPK pathway. Regulation of apoptosis is not affected by Smad3 levels. These data attribute to Smad3 a critical role in the control of cell proliferation by TGF-beta which is lost following an epithelial to mesenchymal transition.
引用
收藏
页码:3251 / 3256
页数:6
相关论文
共 25 条
[1]   TGF-β signaling in cancer -: a double-edged sword [J].
Akhurst, RJ ;
Derynck, R .
TRENDS IN CELL BIOLOGY, 2001, 11 (11) :S44-S51
[2]   Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response [J].
Ashcroft, GS ;
Yang, X ;
Glick, AB ;
Weinstein, M ;
Letterio, JJ ;
Mizel, DE ;
Anzano, M ;
Greenwell-Wild, T ;
Wahl, SM ;
Deng, CX ;
Roberts, AB .
NATURE CELL BIOLOGY, 1999, 1 (05) :260-266
[3]  
Datto MB, 1999, MOL CELL BIOL, V19, P2495
[4]   FUNCTIONAL-ANALYSIS OF THE TRANSFORMING GROWTH-FACTOR-BETA RESPONSIVE ELEMENTS IN THE WAF1/CIP1/P21 PROMOTER [J].
DATTO, MB ;
YU, Y ;
WANG, XF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28623-28628
[5]   Mutations of the BRAF gene in human cancer [J].
Davies, H ;
Bignell, GR ;
Cox, C ;
Stephens, P ;
Edkins, S ;
Clegg, S ;
Teague, J ;
Woffendin, H ;
Garnett, MJ ;
Bottomley, W ;
Davis, N ;
Dicks, N ;
Ewing, R ;
Floyd, Y ;
Gray, K ;
Hall, S ;
Hawes, R ;
Hughes, J ;
Kosmidou, V ;
Menzies, A ;
Mould, C ;
Parker, A ;
Stevens, C ;
Watt, S ;
Hooper, S ;
Wilson, R ;
Jayatilake, H ;
Gusterson, BA ;
Cooper, C ;
Shipley, J ;
Hargrave, D ;
Pritchard-Jones, K ;
Maitland, N ;
Chenevix-Trench, G ;
Riggins, GJ ;
Bigner, DD ;
Palmieri, G ;
Cossu, A ;
Flanagan, A ;
Nicholson, A ;
Ho, JWC ;
Leung, SY ;
Yuen, ST ;
Weber, BL ;
Siegler, HF ;
Darrow, TL ;
Paterson, H ;
Marais, R ;
Marshall, CJ ;
Wooster, R .
NATURE, 2002, 417 (6892) :949-954
[6]   Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene [J].
Dennler, S ;
Itoh, S ;
Vivien, D ;
ten Dijke, P ;
Huet, S ;
Gauthier, JM .
EMBO JOURNAL, 1998, 17 (11) :3091-3100
[7]   TGF-β signaling in tumor suppression and cancer progression [J].
Derynck, R ;
Akhurst, RJ ;
Balmain, A .
NATURE GENETICS, 2001, 29 (02) :117-129
[8]   TRANSFORMING GROWTH-FACTOR-BETA EFFECTS ON EXPRESSION OF G(1) CYCLINS AND CYCLIN-DEPENDENT PROTEIN-KINASES [J].
GENG, Y ;
WEINBERG, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) :10315-10319
[9]  
Hay ED, 1995, ACTA ANAT, V154, P8
[10]   XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos [J].
Howell, M ;
Hill, CS .
EMBO JOURNAL, 1997, 16 (24) :7411-7421