Three-Valued Paraconsistent Propositional Logics

被引:23
作者
Arieli, Ofer [1 ]
Avron, Arnon [2 ]
机构
[1] Acad Coll Tel Aviv, Sch Comp Sci, Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
来源
NEW DIRECTIONS IN PARACONSISTENT LOGIC | 2015年 / 152卷
关键词
Paraconsistency; 3-valued matrices; Proof systems;
D O I
10.1007/978-81-322-2719-9_4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three-valued matrices provide the simplest semantic framework for introducing paraconsistent logics. This paper is a comprehensive study of the main properties of propositional paraconsistent three-valued logics in general, and of the most important such logics in particular. For each logic in the latter group, we also provide a corresponding cut-free Gentzen-type system.
引用
收藏
页码:91 / 129
页数:39
相关论文
共 39 条
  • [1] Anderson A. R., 1975, ENTAILMENT
  • [2] [Anonymous], 1950, Introduction to Metamathematics
  • [3] [Anonymous], 2005, J APPL LOGIC
  • [4] [Anonymous], 1990, Propositional Logics
  • [5] [Anonymous], ENGLISH TRANSLATION
  • [6] Ideal Paraconsistent Logics
    Arieli, O.
    Avron, A.
    Zamansky, A.
    [J]. STUDIA LOGICA, 2011, 99 (1-3) : 31 - 60
  • [7] The value of the four values
    Arieli, O
    Avron, A
    [J]. ARTIFICIAL INTELLIGENCE, 1998, 102 (01) : 97 - 141
  • [8] Maximal and Premaximal Paraconsistency in the Framework of Three-Valued Semantics
    Arieli, Ofer
    Avron, Arnon
    Zamansky, Anna
    [J]. STUDIA LOGICA, 2011, 97 (01) : 31 - 60
  • [9] Asenjo F.G., 1966, Notre Dame Journal of Formal Logic, V16, P103, DOI DOI 10.1305/NDJFL/1093958482
  • [10] Non-deterministic multiple-valued structures
    Avron, A
    Lev, I
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2005, 15 (03) : 241 - 261