Three-Valued Paraconsistent Propositional Logics

被引:24
作者
Arieli, Ofer [1 ]
Avron, Arnon [2 ]
机构
[1] Acad Coll Tel Aviv, Sch Comp Sci, Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
来源
NEW DIRECTIONS IN PARACONSISTENT LOGIC | 2015年 / 152卷
关键词
Paraconsistency; 3-valued matrices; Proof systems;
D O I
10.1007/978-81-322-2719-9_4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three-valued matrices provide the simplest semantic framework for introducing paraconsistent logics. This paper is a comprehensive study of the main properties of propositional paraconsistent three-valued logics in general, and of the most important such logics in particular. For each logic in the latter group, we also provide a corresponding cut-free Gentzen-type system.
引用
收藏
页码:91 / 129
页数:39
相关论文
共 39 条
[1]  
Anderson A. R., 1975, ENTAILMENT
[2]  
[Anonymous], 1950, Introduction to Metamathematics
[3]  
[Anonymous], 2005, J APPL LOGIC
[4]  
[Anonymous], 1990, Propositional Logics
[5]  
[Anonymous], ENGLISH TRANSLATION
[6]   Ideal Paraconsistent Logics [J].
Arieli, O. ;
Avron, A. ;
Zamansky, A. .
STUDIA LOGICA, 2011, 99 (1-3) :31-60
[7]   The value of the four values [J].
Arieli, O ;
Avron, A .
ARTIFICIAL INTELLIGENCE, 1998, 102 (01) :97-141
[8]   Maximal and Premaximal Paraconsistency in the Framework of Three-Valued Semantics [J].
Arieli, Ofer ;
Avron, Arnon ;
Zamansky, Anna .
STUDIA LOGICA, 2011, 97 (01) :31-60
[9]  
Asenjo F.G., 1966, Notre Dame Journal of Formal Logic, V16, P103, DOI DOI 10.1305/NDJFL/1093958482
[10]   Non-deterministic multiple-valued structures [J].
Avron, A ;
Lev, I .
JOURNAL OF LOGIC AND COMPUTATION, 2005, 15 (03) :241-261