The Markovian metamorphosis of a simple turbulent cascade model

被引:14
作者
Cleve, J
Greiner, M [1 ]
机构
[1] Tech Univ, Inst Theoret Phys, D-01062 Dresden, Germany
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
fully developed turbulence; random multiplicative branching process; Markov process;
D O I
10.1016/S0375-9601(00)00485-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Markovian properties of a discrete random multiplicative cascade model of log-normal type are discussed. After taking small-scale resummation and observational breaking of the ultrametric hierarchy into account, qualitative agreement with Kramers-Moyal coefficients, recently deduced from a fully developed turbulent flow, is achieved. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:104 / 108
页数:5
相关论文
共 25 条
  • [1] On the cascade in fully developed turbulence. The propagator approach versus the Markovian description
    Amblard, PO
    Brossier, JM
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (04) : 579 - 582
  • [2] Random cascades on wavelet dyadic trees
    Arneodo, A
    Bacry, E
    Muzy, JF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (08) : 4142 - 4164
  • [3] Bohr T., 1998, DYNAMICAL SYSTEMS AP
  • [4] CLEVE J, 1999, THESIS TU DRESDEN
  • [5] DONKOV AA, MATHPH9807010
  • [6] Description of a turbulent cascade by a Fokker-Planck equation
    Friedrich, R
    Peinke, J
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (05) : 863 - 866
  • [7] Statistical properties of a turbulent cascade
    Friedrich, R
    Peinke, J
    [J]. PHYSICA D, 1997, 102 (1-2): : 147 - 155
  • [8] Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
  • [9] Translational invariance in turbulent cascade models
    Greiner, M
    Giesemann, J
    Lipa, P
    [J]. PHYSICAL REVIEW E, 1997, 56 (04): : 4263 - 4274
  • [10] Spatial correlations of singularity strengths in multifractal branching processes
    Greiner, M
    Schmiegel, J
    Eickemeyer, F
    Lipa, P
    Eggers, HC
    [J]. PHYSICAL REVIEW E, 1998, 58 (01): : 554 - 564