Gigahertz quantized charge pumping

被引:337
作者
Blumenthal, M. D. [1 ]
Kaestner, B.
Li, L.
Giblin, S.
Janssen, T. J. B. M.
Pepper, M.
Anderson, D.
Jones, G.
Ritchie, D. A.
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[3] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany
[4] Sichuan Univ, Dept Phys, Chengdu 610065, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nphys582
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high-speed, high-accuracy transport of single electrons in nanoscale devices is predicted to underpin future electronics. A key and topical application is the development of a fundamental standard of electrical current linking the ampere to the elementary charge and frequency. For a practical standard, currents at the nanoampere level are required, corresponding to gigahertz transport frequencies. Recent research has concentrated on transport using Coulomb blockade techniques. However, the tunnelling time of the electrons in such devices limits the operation to a few megahertz. We present a different pumping mechanism of single charges, whereby electrons 'surf ' as particles on a time-dependent potential instead of tunnelling through the barriers as waves. This potential is created by two phase-shifted sinusoidal signals applied directly to metallic finger gates on an etched GaAs/AlGaAs quantum wire. Pumping accurate to better than 10(-4), at a frequency up to 3.4 GHz, is reported with this approach.
引用
收藏
页码:343 / 347
页数:5
相关论文
共 25 条
  • [1] Screening of the surface-acoustic-wave potential by a metal gate and the quantization of the acoustoelectric current in a narrow channel
    Aizin, GR
    Gumbs, G
    Pepper, M
    [J]. PHYSICAL REVIEW B, 1998, 58 (16) : 10589 - 10596
  • [2] ANDEREGG VF, 1990, PHYSICA B, V165, P61, DOI 10.1016/S0921-4526(90)80880-R
  • [3] Quantum computation using electrons trapped by surface acoustic waves
    Barnes, CHW
    Shilton, JM
    Robinson, AN
    [J]. PHYSICAL REVIEW B, 2000, 62 (12) : 8410 - 8419
  • [4] SINGLE-ELECTRON TRANSFER IN METALLIC NANOSTRUCTURES
    DEVORET, MH
    ESTEVE, D
    URBINA, C
    [J]. NATURE, 1992, 360 (6404) : 547 - 553
  • [5] Study of the limitations of the quantized acoustic current technique at PTB and NPL
    Ebbecke, J
    Fletcher, NE
    Ahlers, FJ
    Hartland, A
    Janssen, TJBM
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2003, 52 (02) : 594 - 598
  • [6] Nonadiabaticity and single-electron transport driven by surface acoustic waves
    Flensberg, K
    Niu, Q
    Pustilnik, M
    [J]. PHYSICAL REVIEW B, 1999, 60 (24) : 16291 - 16294
  • [7] High-frequency acousto-electric single-photon source
    Foden, CL
    Talyanskii, VI
    Milburn, GJ
    Leadbeater, ML
    Pepper, M
    [J]. PHYSICAL REVIEW A, 2000, 62 (01): : 4
  • [8] Current quantization due to single-electron transfer in Si-wire charge-coupled devices
    Fujiwara, A
    Zimmerman, NM
    Ono, Y
    Takahashi, Y
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (08) : 1323 - 1325
  • [9] FREQUENCY-LOCKED TURNSTILE DEVICE FOR SINGLE ELECTRONS
    GEERLIGS, LJ
    ANDEREGG, VF
    HOLWEG, PAM
    MOOIJ, JE
    POTHIER, H
    ESTEVE, D
    URBINA, C
    DEVORET, MH
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (22) : 2691 - 2694
  • [10] Surface-acoustic-wave-driven luminescence from a lateral p-n junction
    Gell, J. R.
    Atkinson, P.
    Bremner, S. P.
    Sfigakis, F.
    Kataoka, M.
    Anderson, D.
    Jones, G. A. C.
    Barnes, C. H. W.
    Ritchie, D. A.
    Ward, M. B.
    Norman, C. E.
    Shields, A. J.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (24)