Predicting the Probability that a Chemical Causes Steatosis Using Adverse Outcome Pathway Bayesian Networks (AOPBNs)

被引:23
作者
Burgoon, Lyle D. [1 ]
Angrish, Michelle [2 ]
Garcia-Reyero, Natalia [1 ]
Pollesch, Nathan [3 ]
Zupanic, Anze [4 ]
Perkins, Edward [1 ]
机构
[1] US Army Engn Res & Dev Ctr, Vicksburg, MS USA
[2] US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA
[3] US EPA, Midcontinent Ecol Div, Duluth, MN USA
[4] Eawag, Swiss Fed Inst Aquat Sci & Technol, Dubendorf, Switzerland
关键词
Adverse outcome pathway; computational toxicology; risk assessment; toxicology; PEROXISOMAL BETA-OXIDATION; 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE-IV; RECEPTOR-ALPHA; HETERODIMER PARTNER; GENE-EXPRESSION; FATTY LIVER; LIPOGENESIS; ACTIVATION; STRATEGIES; HEALTH;
D O I
10.1111/risa.13423
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Adverse outcome pathway Bayesian networks (AOPBNs) are a promising avenue for developing predictive toxicology and risk assessment tools based on adverse outcome pathways (AOPs). Here, we describe a process for developing AOPBNs. AOPBNs use causal networks and Bayesian statistics to integrate evidence across key events. In this article, we use our AOPBN to predict the occurrence of steatosis under different chemical exposures. Since it is an expert-driven model, we use external data (i.e., data not used for modeling) from the literature to validate predictions of the AOPBN model. The AOPBN accurately predicts steatosis for the chemicals from our external data. In addition, we demonstrate how end users can utilize the model to simulate the confidence (based on posterior probability) associated with predicting steatosis. We demonstrate how the network topology impacts predictions across the AOPBN, and how the AOPBN helps us identify the most informative key events that should be monitored for predicting steatosis. We close with a discussion of how the model can be used to predict potential effects of mixtures and how to model susceptible populations (e.g., where a mutation or stressor may change the conditional probability tables in the AOPBN). Using this approach for developing expert AOPBNs will facilitate the prediction of chemical toxicity, facilitate the identification of assay batteries, and greatly improve chemical hazard screening strategies.
引用
收藏
页码:512 / 523
页数:12
相关论文
共 38 条
  • [21] Prevalence of Nonalcoholic Fatty Liver Disease in the United States: The Third National Health and Nutrition Examination Survey, 1988-1994
    Lazo, Mariana
    Hernaez, Ruben
    Eberhardt, Mark S.
    Bonekamp, Susanne
    Kamel, Ihab
    Guallar, Eliseo
    Koteish, Ayman
    Brancati, Frederick L.
    Clark, Jeanne M.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 178 (01) : 38 - 45
  • [22] Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER
    Liao, W
    Hui, TY
    Young, SG
    Davis, RA
    [J]. JOURNAL OF LIPID RESEARCH, 2003, 44 (05) : 978 - 985
  • [23] A key role for orphan nuclear receptor liver receptor homologue-1 in activation of fatty acid synthase promoter by liver X receptor
    Matsukuma, Karen E.
    Wang, Li
    Bennett, Mary K.
    Osborne, Timothy F.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (28) : 20164 - 20171
  • [24] PKCλ in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity
    Matsumoto, M
    Ogawa, W
    Akimoto, K
    Inoue, H
    Miyake, K
    Furukawa, K
    Hayashi, Y
    Iguchi, H
    Matsuki, Y
    Hiramatsu, R
    Shimano, H
    Yamada, N
    Ohno, S
    Kasuga, M
    Noda, T
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (06) : 935 - 944
  • [25] Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes
    Matsusue, K
    Haluzik, M
    Lambert, G
    Yim, SH
    Gavrilova, O
    Ward, JM
    Brewer, B
    Reitman, ML
    Gonzalez, FJ
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2003, 111 (05) : 737 - 747
  • [26] Molecular basis of D-bifunctional protein deficiency
    Möller, G
    van Grunsven, EG
    Wanders, RJA
    Adamski, J
    [J]. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2001, 171 (1-2) : 61 - 70
  • [27] An Introduction to Causal Inference
    Pearl, Judea
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02)
  • [28] Peroxisome Proliferator-Activated Receptor Alpha Target Genes
    Rakhshandehroo, Maryam
    Knoch, Bianca
    Muller, Michael
    Kersten, Sander
    [J]. PPAR RESEARCH, 2010, 2010
  • [29] Peroxisomal β-oxidation and steatohepatitis
    Rao, MS
    Reddy, JK
    [J]. SEMINARS IN LIVER DISEASE, 2001, 21 (01) : 43 - 55
  • [30] Nonalcoholic steatosis and steatohepatitis -: III.: Peroxisomal β-oxidation, PPARα, and steatohepatitis
    Reddy, JK
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2001, 281 (06): : G1333 - G1339