Predicting the Probability that a Chemical Causes Steatosis Using Adverse Outcome Pathway Bayesian Networks (AOPBNs)

被引:23
作者
Burgoon, Lyle D. [1 ]
Angrish, Michelle [2 ]
Garcia-Reyero, Natalia [1 ]
Pollesch, Nathan [3 ]
Zupanic, Anze [4 ]
Perkins, Edward [1 ]
机构
[1] US Army Engn Res & Dev Ctr, Vicksburg, MS USA
[2] US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA
[3] US EPA, Midcontinent Ecol Div, Duluth, MN USA
[4] Eawag, Swiss Fed Inst Aquat Sci & Technol, Dubendorf, Switzerland
关键词
Adverse outcome pathway; computational toxicology; risk assessment; toxicology; PEROXISOMAL BETA-OXIDATION; 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE-IV; RECEPTOR-ALPHA; HETERODIMER PARTNER; GENE-EXPRESSION; FATTY LIVER; LIPOGENESIS; ACTIVATION; STRATEGIES; HEALTH;
D O I
10.1111/risa.13423
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Adverse outcome pathway Bayesian networks (AOPBNs) are a promising avenue for developing predictive toxicology and risk assessment tools based on adverse outcome pathways (AOPs). Here, we describe a process for developing AOPBNs. AOPBNs use causal networks and Bayesian statistics to integrate evidence across key events. In this article, we use our AOPBN to predict the occurrence of steatosis under different chemical exposures. Since it is an expert-driven model, we use external data (i.e., data not used for modeling) from the literature to validate predictions of the AOPBN model. The AOPBN accurately predicts steatosis for the chemicals from our external data. In addition, we demonstrate how end users can utilize the model to simulate the confidence (based on posterior probability) associated with predicting steatosis. We demonstrate how the network topology impacts predictions across the AOPBN, and how the AOPBN helps us identify the most informative key events that should be monitored for predicting steatosis. We close with a discussion of how the model can be used to predict potential effects of mixtures and how to model susceptible populations (e.g., where a mutation or stressor may change the conditional probability tables in the AOPBN). Using this approach for developing expert AOPBNs will facilitate the prediction of chemical toxicity, facilitate the identification of assay batteries, and greatly improve chemical hazard screening strategies.
引用
收藏
页码:512 / 523
页数:12
相关论文
共 38 条
  • [1] Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis
    Angrish, Michelle M.
    McQueen, Charlene A.
    Cohen-Hubal, Elaine
    Bruno, Maribel
    Ge, Yue
    Chorley, Brian N.
    [J]. TOXICOLOGICAL SCIENCES, 2017, 159 (01) : 159 - 169
  • [2] ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT
    Ankley, Gerald T.
    Bennett, Richard S.
    Erickson, Russell J.
    Hoff, Dale J.
    Hornung, Michael W.
    Johnson, Rodney D.
    Mount, David R.
    Nichols, John W.
    Russom, Christine L.
    Schmieder, Patricia K.
    Serrrano, Jose A.
    Tietge, Joseph E.
    Villeneuve, Daniel L.
    [J]. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (03) : 730 - 741
  • [3] How well can carcinogenicity be predicted by high throughput "characteristics of carcinogens" mechanistic data?
    Becker, Richard A.
    Dreier, David A.
    Manibusan, Mary K.
    Cox, Louis A.
    Simon, Ted W.
    Bus, James S.
    [J]. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2017, 90 : 185 - 196
  • [4] Using In Vitro High-Throughput Screening Data for Predicting Benzo[k] Fluoranthene Human Health Hazards
    Burgoon, Lyle D.
    Druwe, Ingrid L.
    Painter, Kyle
    Yost, Erin E.
    [J]. RISK ANALYSIS, 2017, 37 (02) : 280 - 290
  • [5] The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism
    Chambel, Silvia S.
    Santos-Goncalves, Andreia
    Duarte, Tiago L.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [6] Ablation of PI3K p110-α Prevents High-Fat Diet-Induced Liver Steatosis
    Chattopadhyay, Mohar
    Selinger, Elzbieta S.
    Ballou, Lisa M.
    Lin, Richard Z.
    [J]. DIABETES, 2011, 60 (05) : 1483 - 1492
  • [7] Corton JC, 1996, MOL PHARMACOL, V50, P1157
  • [8] European Chemicals Agency, 2019, ECHA NEWS
  • [9] The Reactome Pathway Knowledgebase
    Fabregat, Antonio
    Jupe, Steven
    Matthews, Lisa
    Sidiropoulos, Konstantinos
    Gillespie, Marc
    Garapati, Phani
    Haw, Robin
    Jassal, Bijay
    Korninger, Florian
    May, Bruce
    Milacic, Marija
    Roca, Corina Duenas
    Rothfels, Karen
    Sevilla, Cristoffer
    Shamovsky, Veronica
    Shorser, Solomon
    Varusai, Thawfeek
    Viteri, Guilherme
    Weiser, Joel
    Wu, Guanming
    Stein, Lincoln
    Hermjakob, Henning
    D'Eustachio, Peter
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D649 - D655
  • [10] Tissue-specific induction of 17β-hydroxysteroid dehydrogenase type IV by peroxisome proliferator chemicals is dependent on the peroxisome proliferator-activated receptor α
    Fan, LQ
    Cattley, RC
    Corton, JC
    [J]. JOURNAL OF ENDOCRINOLOGY, 1998, 158 (02) : 237 - 246